From f85741eef532a6181bc5ce6d55a442d07db05e1f Mon Sep 17 00:00:00 2001 From: Adrian Kummerlaender Date: Tue, 15 Jun 2021 00:11:23 +0200 Subject: Setup basic reference export --- lbm.org | 10 +++++++--- org.css | 10 ++++------ sources.bib | 25 +++++++++++++++++++++++++ 3 files changed, 36 insertions(+), 9 deletions(-) create mode 100644 sources.bib diff --git a/lbm.org b/lbm.org index 0f66311..b3a0670 100644 --- a/lbm.org +++ b/lbm.org @@ -713,7 +713,7 @@ One comparably simple model for respresenting the smaller eddies in such a LES i This model yields a expression for computing the /effective relaxation rate/ $\tau_\text{eff}$ on a per-cell basis given the global relaxation time $\tau$ and a Smagorinsky constant. As the relaxation time in BGK LBM is a function of the viscosity this translates into computing the effective viscosity using a local strain-rate tensor reconstruction based on the non-equilibrium part of each -cell's populations. +cell's populations. This follows the approach laid out by Yu et al. in cite:yuDNSDecayingIsotropic2005. #+BEGIN_SRC python :session :results none tau, smagorinsky = symbols('tau, smagorinsky') @@ -1068,8 +1068,10 @@ __device__ static void apply(descriptor::D3Q19, S f_curr[19], S f_next[19], std: <> #+END_SRC -Given a precomputed distance factor =q= we can compute an interpolated bounce back -boundary. +Following the approach by Bouzidi et al. cite:bouzidiMomentumTransferBoltzmannlattice2001 +an improved version of plain bounce back can be formulated using the distance between cell and wall. +This /interpolated/ bounce back condition reconstructs the missing populations using a basic linear +interpolation w.r.t. a precomputed wall distance factor $q$. $$\begin{align*} f_i(x_f,t+\delta t) &= 2q f_j(x_f,t) + (1-2q) f_j(x_{f} + \delta x \xi_i,t) && q \leq \frac{1}{2} \\ @@ -5844,6 +5846,8 @@ done | 4 | 240 | 1000 | 2561.12 | | 4 | 256 | 1000 | 2511.97 | +* References +#+BIBLIOGRAPHY: sources acm option:-dl option:-nobibsource * Open tasks :properties: :unnumbered: notoc diff --git a/org.css b/org.css index 249feda..aba1ce9 100644 --- a/org.css +++ b/org.css @@ -99,7 +99,8 @@ h4,h5,h6{ font-size:1em } dt{ - font-weight:700 + font-weight:bold; + float:left } table{ margin:1em auto; @@ -191,11 +192,8 @@ pre.example { text-align:right; white-space:nowrap } -#bibliography{ - font-size:90% -} -#bibliography table{ - width:100% +#bibliography h2{ + display:none; } .todo { font-family:monospace; diff --git a/sources.bib b/sources.bib new file mode 100644 index 0000000..c6055fd --- /dev/null +++ b/sources.bib @@ -0,0 +1,25 @@ +@article{yuDNSDecayingIsotropic2005, + title = {{{DNS}} and {{LES}} of Decaying Isotropic Turbulence with and without Frame Rotation Using Lattice {{Boltzmann}} Method}, + author = {Yu, Huidan and Girimaji, Sharath S. and Luo, Li-Shi}, + year = {2005}, + month = nov, + volume = {209}, + pages = {599--616}, + issn = {00219991}, + doi = {10.1016/j.jcp.2005.03.022}, + journal = {Journal of Computational Physics}, + number = {2} +} +@article{bouzidiMomentumTransferBoltzmannlattice2001, + title = {Momentum Transfer of a {{Boltzmann}}-Lattice Fluid with Boundaries}, + author = {Bouzidi, M'hamed and Firdaouss, Mouaouia and Lallemand, Pierre}, + year = {2001}, + month = nov, + volume = {13}, + pages = {3452--3459}, + issn = {1070-6631, 1089-7666}, + doi = {10.1063/1.1399290}, + journal = {Physics of Fluids}, + number = {11}, +} + -- cgit v1.2.3