#include #include #include #include "util/render_window.h" #include "util/texture.h" #include "util/colormap.h" #include "util/volumetric_example.h" #include "sampler/velocity_norm.h" #include "sampler/curl_norm.h" #include "sampler/q_criterion.h" using T = float; using DESCRIPTOR = descriptor::D3Q19; int main() { if (cuda::device::count() == 0) { std::cerr << "No CUDA devices on this system" << std::endl; return -1; } auto current = cuda::device::current::get(); const descriptor::Cuboid cuboid(500, 100, 100); Lattice lattice(cuboid); CellMaterials materials(cuboid, [&cuboid](uint3 p) -> int { if (p.z == 0 || p.z == cuboid.nZ-1) { return 2; // boundary cell } else if (p.y == 0 || p.y == cuboid.nY-1) { return 3; // boundary cell } else if (p.x == 0) { return 4; // inflow cell } else if (p.x == cuboid.nX-1) { return 5; // outflow cell } else { return 1; // bulk } }); for (std::size_t iX=0; iX < cuboid.nX; ++iX) { materials.set(gid(cuboid, iX, 0, 0), 6); materials.set(gid(cuboid, iX, cuboid.nY-1, 0), 6); materials.set(gid(cuboid, iX, 0, cuboid.nZ-1), 6); materials.set(gid(cuboid, iX, cuboid.nY-1, cuboid.nZ-1), 6); } auto obstacle = [cuboid] __host__ __device__ (float3 p) -> float { p -= make_float3(cuboid.nX/5, cuboid.nY/2, cuboid.nZ/2); float3 q = sdf::twisted(p, 0.01); return sdf::sphere(p, cuboid.nY/3.5) + sin(0.2*q.x)*sin(0.2*q.y)*sin(0.2*q.z); }; materials.sdf(obstacle, 0); SignedDistanceBoundary bouzidi(lattice, materials, obstacle, 1, 0); auto bulk_mask = materials.mask_of_material(1); auto wall_mask_z = materials.mask_of_material(2); auto wall_mask_y = materials.mask_of_material(3); auto inflow_mask = materials.mask_of_material(4); auto outflow_mask = materials.mask_of_material(5); auto edge_mask = materials.mask_of_material(6); cuda::synchronize(current); VolumetricExample renderer(cuboid); renderer.add(lattice, bulk_mask, obstacle); renderer.add(lattice, bulk_mask, obstacle); renderer.add(lattice, bulk_mask, obstacle); renderer.run([&](std::size_t iStep) { const float tau = 0.501; const float smagorinsky = 0.1; const float inflow = 0.04; lattice.apply(Operator(SmagorinskyBgkCollideO(), bulk_mask, tau, smagorinsky), Operator(BounceBackFreeSlipO(), wall_mask_z, WallNormal<0,0,1>()), Operator(BounceBackFreeSlipO(), wall_mask_y, WallNormal<0,1,0>()), Operator(EquilibriumVelocityWallO(), inflow_mask, std::min(iStep*1e-4, 1.0)*inflow, WallNormal<1,0,0>()), Operator(EquilibriumDensityWallO(), outflow_mask, 1, WallNormal<-1,0,0>()), Operator(BounceBackO(), edge_mask)); lattice.apply(bouzidi.getCount(), bouzidi.getConfig()); lattice.stream(); }); }