# Notizen zu C++ und Unicode Unicode ist ein Zeichensatz der den Großteil der weltweit gebräuchlichen Schriftsysteme abdeckt. Jedes einzelne Symbol wird dabei von einem sogenannten Code-Point definiert, welcher bis zu 21 Bit umfassen kann. Je nach präferierter Enkodierung wird ein solcher Code-Point von vier, zwei oder einer Code-Unit mit einer Länge von respektive ein, zwei oder vier Byte repräsentiert. Die direkte Repräsentation eines Unicode Code-Points ohne Aufteilung auf mehrere Code-Units nennt sich UTF-32. Wird ein Code-Point in ein oder zwei jeweils zwei Byte langen Code-Units enkodiert, spricht man von UTF-16. Die in gewöhnlichen Anwendungsfällen effizienteste Enkodierung ist UTF-8. Dort wird jeder Code-Point von bis zu vier jeweils ein Byte langen Code-Units repräsentiert. Vorteil von UTF-8 gegenüber den beiden anderen Varianten ist dabei die Rückwärtskompatibilität zu ASCII sowie die Unabhängigkeit von der jeweils plattformspezifischen Byte-Reihenfolge. Getreu der auf [UTF-8 Everywhere](http://www.utf8everywhere.org/) hervorgebrachten Argumentation werden wir uns im Folgenden mit UTF-8 beschäftigen und die beiden alternativen Enkodierungsarten ignorieren. Grundsätzlich stellt es auf der Plattform meiner Wahl - Linux mit Lokalen auf _en\_US.UTF-8_ - kein Problem dar, UTF-8 enkodierte Strings in C++ Programmen zu verarbeiten. Den Klassen der C++ Standard Library ist es, solange wir nur über das reine Speichern und Bewegen von Strings sprechen, egal ob dieser in UTF-8, ASCII oder einem ganz anderen Zeichensatz kodiert ist. Möchten wir sicher gehen, dass ein in einer Instanz von _std::string_ enthaltener Text tatsächlich in UTF-8 enkodiert wird und dies nicht vom Zeichensatz der Quelldatei abhängig ist, reicht es dies durch voranstellen von _u8_ zu definieren: std::string test(u8"Hellø Uni¢ød€!"); Der C++ Standard garantiert uns, dass ein solcher String in UTF-8 enkodiert wird. Auch die Ausgabe von in dieser Form enkodierten Strings funktioniert nach meiner Erfahrung - z.T. erst nach setzen der Lokale mittels _std::setlocale_ - einwandfrei. Probleme gibt es dann, wenn wir den Text als solchen näher untersuchen oder sogar verändern wollen bzw. die Ein- und Ausgabe des Textes in anderen Formaten erfolgen soll. Für letzteres gibt es eigentlich die _std::codecvt_ Facetten, welche aber in der aktuellen Version der GNU libstdc++ noch [nicht implementiert](http://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.iso.2011) sind. Wir müssen in diesem Fall also auf externe Bibliotheken wie beispielweise [iconv](https://www.gnu.org/software/libiconv/) oder [ICU](http://site.icu-project.org/) zurückgreifen. Auch die in der C++ Standard Library enthaltenen Templates zur String-Verarbeitung helfen uns bei Multibyte-Enkodierungen, zu denen auch UTF-8 zählt, nicht viel, da diese mit dem _char_ Datentyp und nicht mit Code-Points arbeiten. So liefert _std::string_ beispielsweise für einen UTF-8 enkodierten String, welcher nicht nur von dem in einer Code-Unit abbildbaren ASCII-Subset Gebrauch macht, nicht die korrekte Zeichenanzahl. Auch eine String-Iteration ist mit den Standard-Klassen nur Byte- und nicht Code-Point-Weise umsetzbar. Wir stehen also vor der Entscheidung eine weitere externe Bibliothek zu verwenden oder Programm-Intern vollständig auf UTF-32 zu setzen. ### Ein UTF-8 Codepoint-Iterator in C++ Um zumindest für rein lesende Zugriffe auf UTF-8 Strings nicht gleich eine Bibliothek wie Boost oder [easl](http://code.google.com/p/easl/) verwenden zu müssen habe ich einen einfachen UTF-8 Codepoint-Iterator anhand der Spezifikation in [RFC3629](http://tools.ietf.org/html/rfc3629) implementiert. Den Quellcode dieser Klasse stelle ich auf [Github](https://github.com/KnairdA/CodepointIterator) oder in [cgit](http://code.kummerlaender.eu/CodepointIterator/tree/) als Open Source unter der MIT-Lizenz zur freien Verfügung. UTF-8 enkodiert die aktuell maximal 21 Bit eines Unicode Code-Points in bis zu vier Code-Units mit einer Länge von je einem Byte. Die verbleibenden maximal 11 Bit werden dazu verwendet, Anfangs- und Fortsetzungs-Bytes eines Code-Points zu kennzeichnen und schon in der ersten Code-Unit zu definieren, in wie vielen Code-Units das aktuelle Symbol enkodiert ist.
Payload | Struktur |
---|---|
7 | 0xxxxxxx |
11 | 110xxxxx 10xxxxxx |
17 | 1110xxxx 10xxxxxx 10xxxxxx |
21 | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx |