#include #include #include #include "lbm.h" #include "boundary_conditions.h" #include "box_obstacle.h" constexpr std::size_t dimX = 120; constexpr std::size_t dimY = dimX; constexpr double uLid = 0.3; constexpr double reynolds = 1000; constexpr double tau = 3 * uLid * (dimX-1) / reynolds + 0.5; constexpr double omega = 1. / tau; DataCellBuffer pop(dimX, dimY); FluidBuffer fluid(dimX, dimY); std::vector obstacles{ {20, 20, 40, 40}, {50, 20, 70, 40}, {80, 20, 100, 40}, {20, 50, 40, 70}, {50, 50, 70, 70}, {80, 50, 100, 70}, {20, 80, 40, 100}, {50, 80, 70, 100}, {80, 80, 100, 100}, }; void init() { for ( std::size_t x = 0; x < dimX; ++x ) { for ( std::size_t y = 0; y < dimY; ++y ) { fluid.density(x,y) = 1.0; fluid.velocity(x,y) = { 0.0, 0.0 }; static_cast(pop.curr(x,y)).equilibrize( fluid.density(x,y), fluid.velocity(x,y)); static_cast(pop.prev(x,y)).equilibrize( fluid.density(x,y), fluid.velocity(x,y)); } } } void computeLbmStep() { pop.swap(); for ( std::size_t x = 0; x < dimX; ++x ) { for ( std::size_t y = 0; y < dimY; ++y ) { if ( std::all_of(obstacles.cbegin(), obstacles.cend(), [x, y](const auto& o) { return !o.isInside(x, y); }) ) { streamFluidCell(pop, x, y); } } } // straight wall cell bounce back for ( std::size_t x = 0; x < dimX; ++x ) { computeZouHeVelocityWallCell(pop, {x, dimY-1}, { 0,-1}, uLid); } for ( std::size_t x = 1; x < dimX-1; ++x ) { computeWallCell(pop, {x, 0}, { 0, 1}); } for ( std::size_t y = 1; y < dimY-1; ++y ) { computeWallCell(pop, {0, y}, { 1, 0}); computeWallCell(pop, {dimX-1, y}, {-1, 0}); } // edge wall cell bounce back computeWallCell(pop, {0, 0 }, { 1, 1}); computeWallCell(pop, {dimX-1, 0 }, {-1, 1}); // obstacles for ( const auto& box : obstacles ) { box.applyBoundary(pop); } for ( std::size_t x = 0; x < dimX; ++x ) { for ( std::size_t y = 0; y < dimY; ++y ) { Cell& cell = static_cast(pop.curr(x,y)); fluid.density(x,y) = cell.sum(); fluid.velocity(x,y) = cell.velocity(fluid.density(x,y)); if ( std::all_of(obstacles.cbegin(), obstacles.cend(), [x, y](const auto& o) { return !o.isInside(x, y); }) ) { collideFluidCell(omega, pop, fluid, x, y); } } } } int main() { init(); std::cout << "Re: " << reynolds << std::endl; std::cout << "uLid: " << uLid << std::endl; std::cout << "tau: " << tau << std::endl; for ( std::size_t t = 0; t <= 6000; ++t ) { computeLbmStep(); if ( t % 100 == 0 ) { std::cout << "."; std::cout.flush(); fluid.writeAsVTK(t); } } std::cout << std::endl; }