#include #include #include #include #include #include "src/vector.h" struct DataCell { double data[3][3]; inline double& get(int x, int y) { return data[1+x][1-y]; } inline double get(int x, int y) const { return data[1+x][1-y]; } }; using Velocity = Vector; using Force = Vector; using Density = double; constexpr DataCell weight{ 1./36., 1./9., 1./36., 1./9., 4./9., 1./9., 1./36., 1./9., 1./36 }; struct Cell : DataCell { void equilibrize(Density d, Velocity v) { for ( int i = -1; i <= 1; ++i ) { for ( int j = -1; j <= 1; ++j ) { get(i,j) = weight.get(i,j) * d * (1 + 3*v.comp(i,j) + 4.5*sq(v.comp(i,j)) - 1.5*sq(v.norm())); } } } double sum() const { return get(-1, 1) + get( 0, 1) + get( 1, 1) + get(-1, 0) + get( 0, 0) + get( 1, 0) + get(-1,-1) + get( 0,-1) + get( 1,-1); } Velocity velocity(Density d) const { return 1./d * Velocity{ get( 1, 0) - get(-1, 0) + get( 1, 1) - get(-1,-1) + get( 1,-1) - get(-1,1), get( 0, 1) - get( 0,-1) + get( 1, 1) - get(-1,-1) - get( 1,-1) + get(-1,1) }; } }; class CellBuffer { private: const std::size_t dim_x_; const std::size_t dim_y_; std::unique_ptr curr_; std::unique_ptr prev_; public: CellBuffer(std::size_t dimX, std::size_t dimY): dim_x_(dimX), dim_y_(dimY), curr_(new Cell[dimX*dimY]), prev_(new Cell[dimX*dimY]) { } void swap() { curr_.swap(prev_); } inline Cell& curr(std::size_t x, std::size_t y) { return curr_[y*dim_x_ + x]; } inline Cell& prev(std::size_t x, std::size_t y) { return prev_[y*dim_x_ + x]; } }; constexpr std::size_t dimX = 128; constexpr std::size_t dimY = 128; constexpr double tau = 0.6; CellBuffer pop(dimX, dimY); Density density [dimX][dimY]; Velocity velocity[dimX][dimY]; Force force [dimX][dimY]; void computeFluidCell(std::size_t x, std::size_t y) { // compute equilibrium Cell eq; eq.equilibrize(density[x][y], velocity[x][y]); // collide (BGK, relax towards equilibrium) & stream for ( int i = -1; i <= 1; ++i ) { for ( int j = -1; j <= 1; ++j ) { pop.curr(x+i,y+j).get(i,j) = pop.prev(x,y).get(i,j) + 1./tau * (eq.get(i,j) - pop.prev(x,y).get(i,j)); } } } inline int clamp(int x) { return x / -x; } void computeWallCell(std::size_t x, std::size_t y, int normalX, int normalY) { pop.curr(x,y).get(clamp(normalX+normalY),clamp(normalY-normalX)) = pop.curr(x-normalX,y-normalY).get(clamp(normalX-normalY),clamp(normalY+normalX)); pop.curr(x,y).get(normalX ,normalY ) = pop.curr(x-normalX,y-normalY).get(-normalX,-normalY); pop.curr(x,y).get(clamp(normalX-normalY),clamp(normalY+normalX)) = pop.curr(x-normalX,y-normalY).get(clamp(normalX+normalY),clamp(normalY-normalX)); } void computeLbmStep(std::size_t t) { pop.swap(); for ( std::size_t x = 1; x < dimX - 1; ++x ) { for ( std::size_t y = 1; y < dimY - 1; ++y ) { if ( x <= 20 || x >= 40 || y <= 20 || y >= 40 ) { computeFluidCell(x, y); } } } // obstacle { for ( std::size_t x = 21; x < 40; ++x ) { computeWallCell(x, 40, 0, 1); computeWallCell(x, 20, 0, -1); } for ( std::size_t y = 21; y < 40; ++y ) { computeWallCell(40, y, 1, 0); computeWallCell(20, y, -1, 0); } computeWallCell(40,40, 1, 1); computeWallCell(40,20, 1,-1); computeWallCell(20,40,-1, 1); computeWallCell(20,20,-1,-1); } // straight wall cell bounce back for ( std::size_t x = 2; x < dimX - 2; ++x ) { computeWallCell(x, 1, 0, 1); computeWallCell(x, dimY-2, 0, -1); } for ( std::size_t y = 2; y < dimY - 2; ++y ) { computeWallCell(1,y,1,0); computeWallCell(dimX-2,y,-1,0); } // edge wall cell bounce back computeWallCell(1,1,1,1); computeWallCell(1,dimY-2,1,-1); computeWallCell(dimX-2,1,-1,1); computeWallCell(dimX-2,dimY-2,-1,-1); // update density, velocity field for ( std::size_t x = 0; x < dimX; ++x ) { for ( std::size_t y = 0; y < dimY; ++y ) { density[x][y] = pop.curr(x,y).sum(); velocity[x][y] = pop.curr(x,y).velocity(density[x][y]); } } } void writeCurrentStateAsVTK(int time) { std::ofstream fout; fout.open(("result/data_t" + std::to_string(time) + ".vtk").c_str()); fout << "# vtk DataFile Version 3.0\n"; fout << "lbm_output\n"; fout << "ASCII\n"; fout << "DATASET RECTILINEAR_GRID\n"; fout << "DIMENSIONS " << dimX - 2 << " " << dimY - 2 << " 1" << "\n"; fout << "X_COORDINATES " << dimX - 2 << " float\n"; for( std::size_t x = 1; x < dimX - 1; ++x ) { fout << x << " "; } fout << "\nY_COORDINATES " << dimY - 2 << " float\n"; for( std::size_t y = 1; y < dimY - 1; ++y ) { fout << y << " "; } fout << "\nZ_COORDINATES " << 1 << " float\n"; fout << 0 << "\n"; fout << "POINT_DATA " << (dimX - 2) * (dimY - 2) << "\n"; fout << "VECTORS velocity float\n"; for ( std::size_t y = 1; y < dimY - 1; ++y ) { for ( std::size_t x = 1; x < dimX - 1; ++x ) { fout << velocity[x][y][0] << " " << velocity[x][y][1] << " 0\n"; } } fout << "SCALARS density float 1\n"; fout << "LOOKUP_TABLE default\n"; for ( std::size_t y = 1; y < dimY - 1; ++y ) { for ( std::size_t x = 1; x < dimX - 1; ++x ) { fout << density[x][y] << "\n"; } } fout.close(); } void init() { for ( std::size_t x = 0; x < dimX; ++x ) { for ( std::size_t y = 0; y < dimY; ++y ) { density[x][y] = 1.0; velocity[x][y] = { 0.0, 0.0 }; force[x][y] = { 0.0, 0.0 }; pop.curr(x,y).equilibrize(density[x][y], velocity[x][y]); pop.prev(x,y).equilibrize(density[x][y], velocity[x][y]); } } for ( std::size_t y = 55; y < dimY-55; ++y ) { for ( std::size_t x = 75; x < dimX-35; ++x ) { density[x][y] = 0.6; } } } int main() { init(); for ( std::size_t t = 0; t < 500; ++t ) { computeLbmStep(t); if ( t % 2 == 0 ) { writeCurrentStateAsVTK(t); } } }