#include #include #include #include "lbm.h" #include "boundary_conditions.h" #include "box_obstacle.h" constexpr std::size_t dimX = 500; constexpr std::size_t dimY = 40; constexpr double uInflow = 0.01; constexpr double reynolds = 100; constexpr double tau = 3. * uInflow * (dimX-1) / reynolds + 0.5; constexpr double omega = 1. / tau; DataCellBuffer pop(dimX, dimY); FluidBuffer fluid(dimX, dimY); std::vector obstacles{ {100, 0, 120, 25}, {140, 15, 160, 39}, {300, 15, 340, 25}, }; void init() { for ( std::size_t x = 0; x < dimX; ++x ) { for ( std::size_t y = 0; y < dimY; ++y ) { fluid.density(x,y) = 1.0; fluid.velocity(x,y) = { 0.0, 0.0 }; static_cast(pop.curr(x,y)).equilibrize( fluid.density(x,y), fluid.velocity(x,y)); static_cast(pop.prev(x,y)).equilibrize( fluid.density(x,y), fluid.velocity(x,y)); } } } void computeLbmStep() { pop.swap(); for ( std::size_t x = 0; x < dimX; ++x ) { for ( std::size_t y = 0; y < dimY; ++y ) { if ( std::all_of(obstacles.cbegin(), obstacles.cend(), [x, y](const auto& o) { return !o.isInside(x, y); }) ) { streamFluidCell(pop, x, y); } } } for ( std::size_t x = 0; x < dimX; ++x ) { computeWallCell(pop, {x, 0 }, { 0, 1}); computeWallCell(pop, {x, dimY-1}, { 0,-1}); } for ( std::size_t y = 1; y < dimY-1; ++y ) { computeMovingWallCell(pop, {0,y}, {1,0}, {uInflow,0}); } // obstacles for ( const auto& box : obstacles ) { box.applyBoundary(pop); } for ( std::size_t x = 0; x < dimX; ++x ) { for ( std::size_t y = 0; y < dimY; ++y ) { Cell& cell = static_cast(pop.curr(x,y)); // bulk density fluid.density(x,y) = cell.sum(); // outflow if ( x == dimX-1 && y > 0 && y < dimY-1 ) { fluid.density(x,y) = 1.0; } fluid.velocity(x,y) = cell.velocity(fluid.density(x,y)); if ( std::all_of(obstacles.cbegin(), obstacles.cend(), [x, y](const auto& o) { return !o.isInside(x, y); }) ) { collideFluidCell(omega, pop, fluid, x, y); } } } } int main() { init(); std::cout << "Re: " << reynolds << std::endl; std::cout << "uInflow: " << uInflow << std::endl; std::cout << "tau: " << tau << std::endl; std::cout << "omega: " << omega << std::endl; for ( std::size_t t = 0; t <= 10000; ++t ) { computeLbmStep(); if ( t % 1000 == 0 ) { std::cout << "."; std::cout.flush(); fluid.writeAsVTK("result/channel_t" + std::to_string(t) + ".vtk"); } } std::cout << std::endl; }