void equilibrilize(${float_type}* f_next, ${float_type}* f_prev, std::size_t gid) { ${float_type}* preshifted_f_next = f_next + gid*${layout.gid_offset()}; ${float_type}* preshifted_f_prev = f_prev + gid*${layout.gid_offset()}; % for i, w_i in enumerate(descriptor.w): preshifted_f_next[${layout.pop_offset(i)}] = ${w_i.evalf()}; preshifted_f_prev[${layout.pop_offset(i)}] = ${w_i.evalf()}; % endfor } void collide_and_stream( ${float_type}* f_next, const ${float_type}* f_prev, std::size_t gid) { ${float_type}* preshifted_f_next = f_next + gid*${layout.gid_offset()}; const ${float_type}* preshifted_f_prev = f_prev + gid*${layout.gid_offset()}; % for i, c_i in enumerate(descriptor.c): const ${float_type} f_curr_${i} = preshifted_f_prev[${layout.pop_offset(i) + layout.neighbor_offset(-c_i)}]; % endfor % for i, expr in enumerate(moments_subexpr): const ${float_type} ${expr[0]} = ${ccode(expr[1])}; % endfor % for i, expr in enumerate(moments_assignment): ${float_type} ${ccode(expr)} % endfor % for i, expr in enumerate(collision_subexpr): const ${float_type} ${expr[0]} = ${ccode(expr[1])}; % endfor % for i, expr in enumerate(collision_assignment): const ${float_type} ${ccode(expr)} % endfor % for i, expr in enumerate(collision_assignment): preshifted_f_next[${layout.pop_offset(i)}] = f_next_${i}; % endfor } void velocity_momenta_boundary( ${float_type}* f_next, const ${float_type}* f_prev, std::size_t gid, ${float_type} velocity[${descriptor.d}]) { ${float_type}* preshifted_f_next = f_next + gid*${layout.gid_offset()}; const ${float_type}* preshifted_f_prev = f_prev + gid*${layout.gid_offset()}; % for i, c_i in enumerate(descriptor.c): const ${float_type} f_curr_${i} = preshifted_f_prev[${layout.pop_offset(i) + layout.neighbor_offset(-c_i)}]; % endfor % for i, expr in enumerate(moments_subexpr): const ${float_type} ${expr[0]} = ${ccode(expr[1])}; % endfor % for i, expr in enumerate(moments_assignment): ${float_type} ${ccode(expr)} % endfor % for i, expr in enumerate(moments_assignment[1:]): ${expr.lhs} = velocity[${i}]; % endfor % for i, expr in enumerate(collision_subexpr): const ${float_type} ${expr[0]} = ${ccode(expr[1])}; % endfor % for i, expr in enumerate(collision_assignment): const ${float_type} ${ccode(expr)} % endfor % for i, expr in enumerate(collision_assignment): preshifted_f_next[${layout.pop_offset(i)}] = f_next_${i}; % endfor } void collect_moments(const ${float_type}* f, std::size_t gid, ${float_type}& rho, ${float_type} u[${descriptor.d}]) { const ${float_type}* preshifted_f = f + gid*${layout.gid_offset()}; % for i in range(0,descriptor.q): const ${float_type} f_curr_${i} = preshifted_f[${layout.pop_offset(i)}]; % endfor % for i, expr in enumerate(moments_subexpr): const ${float_type} ${expr[0]} = ${ccode(expr[1])}; % endfor % for i, expr in enumerate(moments_assignment): % if i == 0: rho = ${ccode(expr.rhs)}; % else: u[${i-1}] = ${ccode(expr.rhs)}; % endif % endfor } % if 'moments_vtk' in extras: void collect_moments_to_vtk(const std::string& path, ${float_type}* f) { std::ofstream fout; fout.open(path.c_str()); fout << "# vtk DataFile Version 3.0\n"; fout << "lbm_output\n"; fout << "ASCII\n"; fout << "DATASET RECTILINEAR_GRID\n"; % if descriptor.d == 2: fout << "DIMENSIONS " << ${geometry.size_x-2} << " " << ${geometry.size_y-2} << " 1" << "\n"; % else: fout << "DIMENSIONS " << ${geometry.size_x-2} << " " << ${geometry.size_y-2} << " " << ${geometry.size_z-2} << "\n"; % endif fout << "X_COORDINATES " << ${geometry.size_x-2} << " float\n"; for( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) { fout << x << " "; } fout << "\nY_COORDINATES " << ${geometry.size_y-2} << " float\n"; for( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) { fout << y << " "; } % if descriptor.d == 2: fout << "\nZ_COORDINATES " << 1 << " float\n"; fout << 0 << "\n"; fout << "POINT_DATA " << ${(geometry.size_x-2) * (geometry.size_y-2)} << "\n"; % else: fout << "\nZ_COORDINATES " << ${geometry.size_z-2} << " float\n"; for( std::size_t z = 1; z < ${geometry.size_z-1}; ++z ) { fout << z << " "; } fout << "\nPOINT_DATA " << ${(geometry.size_x-2) * (geometry.size_y-2) * (geometry.size_z-2)} << "\n"; % endif ${float_type} rho; ${float_type} u[${descriptor.d}]; fout << "VECTORS velocity float\n"; % if descriptor.d == 2: for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) { for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) { collect_moments(f, x*${geometry.size_y}+y, rho, u); fout << u[0] << " " << u[1] << " 0\n"; } } % else: for ( std::size_t z = 1; z < ${geometry.size_z-1}; ++z ) { for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) { for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) { collect_moments(f, x*${geometry.size_y*geometry.size_z}+y*${geometry.size_z}+z, rho, u); fout << u[0] << " " << u[1] << " " << u[2] << "\n"; } } } % endif fout << "SCALARS density float 1\n"; fout << "LOOKUP_TABLE default\n"; % if descriptor.d == 2: for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) { for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) { collect_moments(f, x*${geometry.size_y}+y, rho, u); fout << rho << "\n"; } } % else: for ( std::size_t z = 1; z < ${geometry.size_z-1}; ++z ) { for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) { for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) { collect_moments(f, x*${geometry.size_y*geometry.size_z}+y*${geometry.size_z}+z, rho, u); fout << rho << "\n"; } } } % endif fout.close(); } % endif % if 'test_ldc' in extras: void test_ldc(std::size_t nStep) { auto f_a = std::make_unique<${float_type}[]>(${geometry.volume*descriptor.q}); auto f_b = std::make_unique<${float_type}[]>(${geometry.volume*descriptor.q}); ${float_type}* f_prev = f_a.get(); ${float_type}* f_next = f_b.get(); std::vector bulk; std::vector lid_bc; std::vector box_bc; for (int iX = 1; iX < ${geometry.size_x-1}; ++iX) { for (int iY = 1; iY < ${geometry.size_y-1}; ++iY) { % if descriptor.d == 2: const std::size_t iCell = iX*${geometry.size_y} + iY; if (iY == ${geometry.size_y-2}) { lid_bc.emplace_back(iCell); } else if (iX == 1 || iX == ${geometry.size_x-2} || iY == 1) { box_bc.emplace_back(iCell); } else { bulk.emplace_back(iCell); } % elif descriptor.d == 3: for (int iZ = 0; iZ < ${geometry.size_z}; ++iZ) { const std::size_t iCell = iX*${geometry.size_y*geometry.size_z} + iY*${geometry.size_z} + iZ; if (iZ == ${geometry.size_z-2}) { lid_bc.emplace_back(iCell); } else if (iX == 1 || iX == ${geometry.size_x-2} || iY == 1 || iY == ${geometry.size_y-2} || iZ == 1) { box_bc.emplace_back(iCell); } else { bulk.emplace_back(iCell); } } % endif } } for (std::size_t iCell = 0; iCell < ${geometry.volume}; ++iCell) { equilibrilize(f_prev, f_next, iCell); } const auto start = std::chrono::high_resolution_clock::now(); for (std::size_t iStep = 0; iStep < nStep; ++iStep) { if (iStep % 2 == 0) { f_next = f_a.get(); f_prev = f_b.get(); } else { f_next = f_b.get(); f_prev = f_a.get(); } for (std::size_t iCell : bulk) { collide_and_stream(f_next, f_prev, iCell); } ${float_type} u[${descriptor.d}] { 0. }; for (std::size_t iCell : box_bc) { velocity_momenta_boundary(f_next, f_prev, iCell, u); } u[0] = 0.1; for (std::size_t iCell : lid_bc) { velocity_momenta_boundary(f_next, f_prev, iCell, u); } } auto duration = std::chrono::duration_cast>( std::chrono::high_resolution_clock::now() - start); std::cout << "#bulk : " << bulk.size() << std::endl; std::cout << "#lid : " << lid_bc.size() << std::endl; std::cout << "#wall : " << box_bc.size() << std::endl; std::cout << "#steps : " << nStep << std::endl; std::cout << std::endl; std::cout << "MLUPS : " << nStep*${geometry.volume}/(1e6*duration.count()) << std::endl; % if 'moments_vtk' in extras: collect_moments_to_vtk("test.vtk", f_next); % endif } % endif