% if 'moments_vtk' in extras: void collect_moments_to_vtk(const std::string& path, ${float_type}* f) { std::ofstream fout; fout.open(path.c_str()); fout << "# vtk DataFile Version 3.0\n"; fout << "lbm_output\n"; fout << "ASCII\n"; fout << "DATASET RECTILINEAR_GRID\n"; % if descriptor.d == 2: fout << "DIMENSIONS " << ${geometry.size_x-2} << " " << ${geometry.size_y-2} << " 1" << "\n"; % else: fout << "DIMENSIONS " << ${geometry.size_x-2} << " " << ${geometry.size_y-2} << " " << ${geometry.size_z-2} << "\n"; % endif fout << "X_COORDINATES " << ${geometry.size_x-2} << " float\n"; for( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) { fout << x << " "; } fout << "\nY_COORDINATES " << ${geometry.size_y-2} << " float\n"; for( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) { fout << y << " "; } % if descriptor.d == 2: fout << "\nZ_COORDINATES " << 1 << " float\n"; fout << 0 << "\n"; fout << "POINT_DATA " << ${(geometry.size_x-2) * (geometry.size_y-2)} << "\n"; % else: fout << "\nZ_COORDINATES " << ${geometry.size_z-2} << " float\n"; for( std::size_t z = 1; z < ${geometry.size_z-1}; ++z ) { fout << z << " "; } fout << "\nPOINT_DATA " << ${(geometry.size_x-2) * (geometry.size_y-2) * (geometry.size_z-2)} << "\n"; % endif ${float_type} rho; ${float_type} u[${descriptor.d}]; fout << "VECTORS velocity float\n"; % if descriptor.d == 2: for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) { for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) { collect_moments(f, x*${geometry.size_y}+y, rho, u); fout << u[0] << " " << u[1] << " 0\n"; } } % else: for ( std::size_t z = 1; z < ${geometry.size_z-1}; ++z ) { for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) { for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) { collect_moments(f, x*${geometry.size_y*geometry.size_z}+y*${geometry.size_z}+z, rho, u); fout << u[0] << " " << u[1] << " " << u[2] << "\n"; } } } % endif fout << "SCALARS density float 1\n"; fout << "LOOKUP_TABLE default\n"; % if descriptor.d == 2: for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) { for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) { collect_moments(f, x*${geometry.size_y}+y, rho, u); fout << rho << "\n"; } } % else: for ( std::size_t z = 1; z < ${geometry.size_z-1}; ++z ) { for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) { for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) { collect_moments(f, x*${geometry.size_y*geometry.size_z}+y*${geometry.size_z}+z, rho, u); fout << rho << "\n"; } } } % endif fout.close(); } % endif void test_ldc(std::size_t nStep) { auto f_a = std::make_unique<${float_type}[]>(${geometry.volume*descriptor.q}); auto f_b = std::make_unique<${float_type}[]>(${geometry.volume*descriptor.q}); ${float_type}* f_prev = f_a.get(); ${float_type}* f_next = f_b.get(); std::vector bulk; std::vector lid_bc; std::vector box_bc; for (int iX = 1; iX < ${geometry.size_x-1}; ++iX) { for (int iY = 1; iY < ${geometry.size_y-1}; ++iY) { % if descriptor.d == 2: const std::size_t iCell = iX*${geometry.size_y} + iY; if (iY == ${geometry.size_y-2}) { lid_bc.emplace_back(iCell); } else if (iX == 1 || iX == ${geometry.size_x-2} || iY == 1) { box_bc.emplace_back(iCell); } else { bulk.emplace_back(iCell); } % elif descriptor.d == 3: for (int iZ = 0; iZ < ${geometry.size_z}; ++iZ) { const std::size_t iCell = iX*${geometry.size_y*geometry.size_z} + iY*${geometry.size_z} + iZ; if (iZ == ${geometry.size_z-2}) { lid_bc.emplace_back(iCell); } else if (iX == 1 || iX == ${geometry.size_x-2} || iY == 1 || iY == ${geometry.size_y-2} || iZ == 1) { box_bc.emplace_back(iCell); } else { bulk.emplace_back(iCell); } } % endif } } for (std::size_t iCell = 0; iCell < ${geometry.volume}; ++iCell) { equilibrilize(f_prev, f_next, iCell); } const auto start = std::chrono::high_resolution_clock::now(); for (std::size_t iStep = 0; iStep < nStep; ++iStep) { if (iStep % 2 == 0) { f_next = f_a.get(); f_prev = f_b.get(); } else { f_next = f_b.get(); f_prev = f_a.get(); } % if 'omp_parallel_for' in extras: #pragma omp parallel for % endif for (std::size_t i = 0; i < bulk.size(); ++i) { collide_and_stream(f_next, f_prev, bulk[i]); } ${float_type} u[${descriptor.d}] { 0. }; % if 'omp_parallel_for' in extras: #pragma omp parallel for % endif for (std::size_t i = 0; i < box_bc.size(); ++i) { velocity_momenta_boundary(f_next, f_prev, box_bc[i], u); } u[0] = 0.05; % if 'omp_parallel_for' in extras: #pragma omp parallel for % endif for (std::size_t i = 0; i < lid_bc.size(); ++i) { velocity_momenta_boundary(f_next, f_prev, lid_bc[i], u); } } auto duration = std::chrono::duration_cast>( std::chrono::high_resolution_clock::now() - start); std::cout << "#bulk : " << bulk.size() << std::endl; std::cout << "#lid : " << lid_bc.size() << std::endl; std::cout << "#wall : " << box_bc.size() << std::endl; std::cout << "#steps : " << nStep << std::endl; std::cout << std::endl; std::cout << "MLUPS : " << nStep*${geometry.volume}/(1e6*duration.count()) << std::endl; % if 'moments_vtk' in extras: collect_moments_to_vtk("test.vtk", f_next); % endif }