<% import sympy moments_subexpr, moments_assignment = model.moments() collision_subexpr, collision_assignment = model.collision(f_eq = model.equilibrium(resolve_moments = False)) %> <%def name="momenta_boundary(name, param)"> void ${name}_momenta_boundary( ${float_type}* f_next, const ${float_type}* f_prev, std::size_t gid, ${param}) { ${float_type}* preshifted_f_next = f_next + ${layout.cell_preshift('gid')}; const ${float_type}* preshifted_f_prev = f_prev + ${layout.cell_preshift('gid')}; % for i, c_i in enumerate(descriptor.c): const ${float_type} f_curr_${i} = preshifted_f_prev[${layout.pop_offset(i) + layout.neighbor_offset(-c_i)}]; % endfor % for i, expr in enumerate(moments_subexpr): const ${float_type} ${expr[0]} = ${sympy.ccode(expr[1])}; % endfor ${caller.body()} % for i, expr in enumerate(collision_subexpr): const ${float_type} ${expr[0]} = ${sympy.ccode(expr[1])}; % endfor % for i, expr in enumerate(collision_assignment): const ${float_type} ${sympy.ccode(expr)} % endfor % for i, expr in enumerate(collision_assignment): preshifted_f_next[${layout.pop_offset(i)}] = f_next_${i}; % endfor } <%call expr="momenta_boundary('velocity', '%s velocity[%d]' % (float_type, descriptor.d))"> ${float_type} ${sympy.ccode(moments_assignment[0])} % for i, expr in enumerate(moments_assignment[1:]): ${float_type} ${expr.lhs} = velocity[${i}]; % endfor <%call expr="momenta_boundary('density', '%s density' % float_type)"> ${float_type} ${moments_assignment[0].lhs} = density; % for i, expr in enumerate(moments_assignment[1:]): ${float_type} ${sympy.ccode(expr)} % endfor