#include #include #include #include #include #include #include "kernel.h" void collect_moments_to_vtk(const std::string& path, ${float_type}** f) { std::ofstream fout; fout.open(path.c_str()); fout << "# vtk DataFile Version 3.0\n"; fout << "lbm_output\n"; fout << "ASCII\n"; fout << "DATASET RECTILINEAR_GRID\n"; % if descriptor.d == 2: fout << "DIMENSIONS " << ${geometry.size_x-2} << " " << ${geometry.size_y-2} << " 1" << "\n"; % else: fout << "DIMENSIONS " << ${geometry.size_x-2} << " " << ${geometry.size_y-2} << " " << ${geometry.size_z-2} << "\n"; % endif fout << "X_COORDINATES " << ${geometry.size_x-2} << " float\n"; for( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) { fout << x << " "; } fout << "\nY_COORDINATES " << ${geometry.size_y-2} << " float\n"; for( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) { fout << y << " "; } % if descriptor.d == 2: fout << "\nZ_COORDINATES " << 1 << " float\n"; fout << 0 << "\n"; fout << "POINT_DATA " << ${(geometry.size_x-2) * (geometry.size_y-2)} << "\n"; % else: fout << "\nZ_COORDINATES " << ${geometry.size_z-2} << " float\n"; for( std::size_t z = 1; z < ${geometry.size_z-1}; ++z ) { fout << z << " "; } fout << "\nPOINT_DATA " << ${(geometry.size_x-2) * (geometry.size_y-2) * (geometry.size_z-2)} << "\n"; % endif ${float_type} rho; ${float_type} u[${descriptor.d}]; fout << "VECTORS velocity float\n"; % if descriptor.d == 2: for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) { for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) { collect_moments(f, x*${geometry.size_y}+y, rho, u); fout << u[0] << " " << u[1] << " 0\n"; } } % else: for ( std::size_t z = 1; z < ${geometry.size_z-1}; ++z ) { for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) { for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) { collect_moments(f, x*${geometry.size_y*geometry.size_z}+y*${geometry.size_z}+z, rho, u); fout << u[0] << " " << u[1] << " " << u[2] << "\n"; } } } % endif fout << "SCALARS density float 1\n"; fout << "LOOKUP_TABLE default\n"; % if descriptor.d == 2: for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) { for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) { collect_moments(f, x*${geometry.size_y}+y, rho, u); fout << rho << "\n"; } } % else: for ( std::size_t z = 1; z < ${geometry.size_z-1}; ++z ) { for ( std::size_t y = 1; y < ${geometry.size_y-1}; ++y ) { for ( std::size_t x = 1; x < ${geometry.size_x-1}; ++x ) { collect_moments(f, x*${geometry.size_y*geometry.size_z}+y*${geometry.size_z}+z, rho, u); fout << rho << "\n"; } } } % endif fout.close(); } void simulate(std::size_t nStep) { <% padding = (max(geometry.size_x,geometry.size_y,geometry.size_z)+1)**(descriptor.d-1) %> auto f_aa = std::make_unique<${float_type}[]>(${(geometry.volume+2*padding)*descriptor.q}); ${float_type}* f[${descriptor.q}]; % for i, c_i in enumerate(descriptor.c): f[${i}] = f_aa.get() + ${padding + layout.pop_offset(i, 2*padding)}; % endfor std::vector ghost; std::vector bulk; std::vector lid_bc; std::vector box_bc; for (int iX = 0; iX < ${geometry.size_x}; ++iX) { for (int iY = 0; iY < ${geometry.size_y}; ++iY) { % if descriptor.d == 2: const std::size_t iCell = iX*${geometry.size_y} + iY; if (iX == 0 || iY == 0 || iX == ${geometry.size_x-1} || iY == ${geometry.size_y-1}) { ghost.emplace_back(iCell); } else if (iY == ${geometry.size_y-2}) { lid_bc.emplace_back(iCell); } else if (iX == 1 || iX == ${geometry.size_x-2} || iY == 1) { box_bc.emplace_back(iCell); } else { bulk.emplace_back(iCell); } % elif descriptor.d == 3: for (int iZ = 0; iZ < ${geometry.size_z}; ++iZ) { const std::size_t iCell = iX*${geometry.size_y*geometry.size_z} + iY*${geometry.size_z} + iZ; if ( iX == 0 || iY == 0 || iZ == 0 || iX == ${geometry.size_x-1} || iY == ${geometry.size_y-1} || iZ == ${geometry.size_z-1}) { ghost.emplace_back(iCell); } else if (iZ == ${geometry.size_z-2}) { lid_bc.emplace_back(iCell); } else if ( iX == 1 || iX == ${geometry.size_x-2} || iY == 1 || iY == ${geometry.size_y-2} || iZ == 1) { box_bc.emplace_back(iCell); } else { bulk.emplace_back(iCell); } } % endif } } std::cout << "#ghost : " << ghost.size() << std::endl; std::cout << "#bulk : " << bulk.size() << std::endl; std::cout << "#lid : " << lid_bc.size() << std::endl; std::cout << "#wall : " << box_bc.size() << std::endl; std::cout << std::endl; #pragma omp parallel for for (std::size_t iCell = 0; iCell < ${geometry.volume}; ++iCell) { equilibrilize(f, iCell); } auto start = std::chrono::high_resolution_clock::now(); for (std::size_t iStep = 1; iStep <= nStep; ++iStep) { #pragma omp parallel for for (std::size_t i = 0; i < ghost.size(); ++i) { equilibrilize(f, ghost[i]); } #pragma omp parallel for for (std::size_t i = 0; i < bulk.size(); ++i) { collide_and_stream(f, bulk[i]); } ${float_type} u[${descriptor.d}] { 0. }; #pragma omp parallel for for (std::size_t i = 0; i < box_bc.size(); ++i) { velocity_momenta_boundary(f, box_bc[i], u); } u[0] = 0.05; #pragma omp parallel for for (std::size_t i = 0; i < lid_bc.size(); ++i) { velocity_momenta_boundary(f, lid_bc[i], u); } if (iStep % 1000 == 0) { auto duration = std::chrono::duration_cast>( std::chrono::high_resolution_clock::now() - start); std::cout << "iStep = " << iStep << "; ~" << 1000*${geometry.volume}/(1e6*duration.count()) << " MLUPS" << std::endl; collect_moments_to_vtk("result/ldc_" + std::to_string(iStep) + ".vtk", f); start = std::chrono::high_resolution_clock::now(); } update_sss_control_structure(f); } } int main() { simulate(20000); }