From 1d4b7059aa969875dbd4904c8a6980afdb39f647 Mon Sep 17 00:00:00 2001 From: Adrian Kummerlaender Date: Fri, 10 Jan 2020 18:10:35 +0100 Subject: Implement model for local sun direction `local_sunrise.py` renders the sky for a given time and place on earth. --- sun.py | 32 ++++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) create mode 100644 sun.py (limited to 'sun.py') diff --git a/sun.py b/sun.py new file mode 100644 index 0000000..87bc8a9 --- /dev/null +++ b/sun.py @@ -0,0 +1,32 @@ +import numpy as np +from datetime import datetime + +## Sun direction depending on time and place +# As described in Appendix D of "ME 4131 Thermal Environmental Engineering Laboratory Manual" + +def sun_declination(time): + day_of_year = time.timetuple().tm_yday + return 23.45 * np.sin(np.radians((360/365)*(284+day_of_year))) + +def equation_of_time(time): + day_of_year = time.timetuple().tm_yday + b = np.radians(360*(day_of_year-81)/364) + return 0.165*np.sin(2*b) - 0.126*np.cos(b) - 0.025*np.sin(b) + +def sun_direction(lat, lon, time, time_diff, summertime_shift = 0): + lon_std = time_diff * 15 + clock_time = time.hour + time.minute/60 + local_solar_time = clock_time + (1/15)*(lon - lon_std) + equation_of_time(time) - summertime_shift + hour_angle = 15*(local_solar_time - 12) + + l = np.radians(lat) + h = np.radians(hour_angle) + d = np.radians(sun_declination(time)) + + altitude = np.arcsin(np.cos(l) * np.cos(h) * np.cos(d) + np.sin(l) * np.sin(d)) + azimuth = np.arccos((np.cos(d) * np.sin(l) * np.cos(h) - np.sin(d) * np.cos(l)) / np.cos(altitude)) + + if (time.timetuple().tm_hour <= 12): + return (altitude, -azimuth) + else: + return (altitude, azimuth) -- cgit v1.2.3