From e7b4bdc064da4340f415ac1e7ddcb6e260d61b0f Mon Sep 17 00:00:00 2001 From: Adrian Kummerlaender Date: Mon, 4 Feb 2019 21:30:45 +0100 Subject: Restructure refined cylinder2d example folders --- apps/adrian/cylinder2d/playground/cylinder2d.cpp | 339 +++++++++++++++++++++++ 1 file changed, 339 insertions(+) create mode 100644 apps/adrian/cylinder2d/playground/cylinder2d.cpp (limited to 'apps/adrian/cylinder2d/playground/cylinder2d.cpp') diff --git a/apps/adrian/cylinder2d/playground/cylinder2d.cpp b/apps/adrian/cylinder2d/playground/cylinder2d.cpp new file mode 100644 index 0000000..5b67408 --- /dev/null +++ b/apps/adrian/cylinder2d/playground/cylinder2d.cpp @@ -0,0 +1,339 @@ +/* + * Lattice Boltzmann grid refinement sample, written in C++, + * using the OpenLB library + * + * Copyright (C) 2019 Adrian Kummerländer + * E-mail contact: info@openlb.net + * The most recent release of OpenLB can be downloaded at + * + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public + * License along with this program; if not, write to the Free + * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, + * Boston, MA 02110-1301, USA. + */ + +#include "olb2D.h" +#ifndef OLB_PRECOMPILED +#include "olb2D.hh" +#endif + +#include + +using namespace olb; + +typedef double T; + +#define DESCRIPTOR descriptors::D2Q9Descriptor + +/// Setup geometry relative to cylinder diameter as defined by [SchaeferTurek96] +const T cylinderD = 0.1; +const int N = 10; // resolution of the cylinder +const T deltaR = cylinderD / N; // coarse lattice spacing +const T lx = 22*cylinderD + deltaR; // length of the channel +const T ly = 4.1*cylinderD + deltaR; // height of the channel +const T cylinderX = 2*cylinderD; +const T cylinderY = 2*cylinderD + deltaR/2; + +const T Re = 100.; // Reynolds number +const T tau = 0.51; // relaxation time +const T maxPhysT = 16.; // max. simulation time in s, SI unit + +const Characteristics PhysCharacteristics( + 0.1, // char. phys. length + 1.0, // char. phys. velocity + 0.1/Re, // phsy. kinematic viscosity + 1.0); // char. phys. density + +void prepareGeometry(Grid2D& grid, Vector origin, Vector extend) +{ + OstreamManager clout(std::cout,"prepareGeometry"); + clout << "Prepare Geometry ..." << std::endl; + + auto& converter = grid.getConverter(); + auto& sGeometry = grid.getSuperGeometry(); + + sGeometry.rename(0,1); + + const T physSpacing = converter.getPhysDeltaX(); + + // Set material number for channel walls + { + const Vector wallExtend { extend[0]+physSpacing/2, physSpacing/2 }; + const Vector wallOrigin = origin - physSpacing/4; + + IndicatorCuboid2D lowerWall(wallExtend, wallOrigin); + sGeometry.rename(1,2,lowerWall); + } + { + const Vector wallExtend { extend[0]+physSpacing/2, physSpacing/2 }; + const Vector wallOrigin { origin[0]-physSpacing/4, extend[1]-physSpacing/4 }; + + IndicatorCuboid2D upperWall(wallExtend, wallOrigin); + sGeometry.rename(1,2,upperWall); + } + + // Set material number for inflow and outflow + { + const Vector inflowExtend { physSpacing/2, extend[1]+physSpacing/4 }; + const Vector inflowOrigin = origin - physSpacing/4; + + IndicatorCuboid2D inflow(inflowExtend, inflowOrigin); + sGeometry.rename(1,3,inflow); + } + { + const Vector outflowExtend { physSpacing/2, extend[1]+physSpacing/4 }; + const Vector outflowOrigin { extend[0]-physSpacing/4, origin[0]-physSpacing/4 }; + + IndicatorCuboid2D outflow(outflowExtend, outflowOrigin); + sGeometry.rename(1,4,outflow); + } + + // Set material number for vertically centered cylinder + { + const Vector cylinderOrigin = origin + Vector {cylinderX, cylinderY}; + IndicatorCircle2D obstacle(cylinderOrigin, cylinderD/2); + sGeometry.rename(1,5,obstacle); + } + + sGeometry.clean(); + sGeometry.innerClean(); + sGeometry.checkForErrors(); + + clout << "Prepare Geometry ... OK" << std::endl; +} + +void disableRefinedArea(Grid2D& coarseGrid, + RefiningGrid2D& fineGrid) +{ + auto& sGeometry = coarseGrid.getSuperGeometry(); + auto refinedOverlap = fineGrid.getRefinedOverlap(); + sGeometry.reset(*refinedOverlap); +} + +void prepareLattice(Grid2D& grid) +{ + OstreamManager clout(std::cout,"prepareLattice"); + clout << "Prepare lattice ..." << std::endl; + + auto& converter = grid.getConverter(); + auto& sGeometry = grid.getSuperGeometry(); + auto& sLattice = grid.getSuperLattice(); + + Dynamics& bulkDynamics = grid.addDynamics( + std::unique_ptr>( + new BGKdynamics( + grid.getConverter().getLatticeRelaxationFrequency(), + instances::getBulkMomenta()))); + + sOnLatticeBoundaryCondition2D& sBoundaryCondition = grid.getOnLatticeBoundaryCondition(); + createInterpBoundaryCondition2D(sBoundaryCondition); + + const T omega = converter.getLatticeRelaxationFrequency(); + + sLattice.defineDynamics(sGeometry, 0, &instances::getNoDynamics()); + sLattice.defineDynamics(sGeometry, 1, &bulkDynamics); // bulk + sLattice.defineDynamics(sGeometry, 2, &bulkDynamics); // walls + sLattice.defineDynamics(sGeometry, 3, &bulkDynamics); // inflow + sLattice.defineDynamics(sGeometry, 4, &bulkDynamics); // outflow + sLattice.defineDynamics(sGeometry, 5, &instances::getBounceBack()); // cylinder + + sBoundaryCondition.addVelocityBoundary(sGeometry, 2, omega); + sBoundaryCondition.addVelocityBoundary(sGeometry, 3, omega); + sBoundaryCondition.addPressureBoundary(sGeometry, 4, omega); + + AnalyticalConst2D rho0(1.0); + AnalyticalConst2D u0(0.0, 0.0); + + auto materials = sGeometry.getMaterialIndicator({1, 2, 3, 4}); + sLattice.defineRhoU(materials, rho0, u0); + sLattice.iniEquilibrium(materials, rho0, u0); + + sLattice.initialize(); + + clout << "Prepare lattice ... OK" << std::endl; + sGeometry.print(); +} + +void setBoundaryValues(Grid2D& grid, int iT) +{ + auto& converter = grid.getConverter(); + auto& sGeometry = grid.getSuperGeometry(); + auto& sLattice = grid.getSuperLattice(); + + const int iTmaxStart = converter.getLatticeTime(0.4*16); + const int iTupdate = 5; + + if ( iT % iTupdate == 0 && iT <= iTmaxStart ) { + PolynomialStartScale StartScale(iTmaxStart, 1); + + T iTvec[1] { T(iT) }; + T frac[1] { }; + StartScale(frac, iTvec); + + const T maxVelocity = converter.getCharLatticeVelocity() * 3./2. * frac[0]; + Poiseuille2D u(sGeometry, 3, maxVelocity, deltaR/2); + + sLattice.defineU(sGeometry, 3, u); + } +} + +void getResults(const std::string& prefix, + Grid2D& grid, + int iT) +{ + OstreamManager clout(std::cout,"getResults"); + + auto& converter = grid.getConverter(); + auto& sLattice = grid.getSuperLattice(); + auto& sGeometry = grid.getSuperGeometry(); + + SuperVTMwriter2D vtmWriter(prefix + "cylinder2d"); + SuperLatticePhysVelocity2D velocity(sLattice, converter); + SuperLatticePhysPressure2D pressure(sLattice, converter); + SuperLatticeGeometry2D geometry(sLattice, sGeometry); + SuperLatticeKnudsen2D knudsen(sLattice); + vtmWriter.addFunctor(geometry); + vtmWriter.addFunctor(velocity); + vtmWriter.addFunctor(pressure); + vtmWriter.addFunctor(knudsen); + + if (iT==0) { + vtmWriter.createMasterFile(); + } + + vtmWriter.write(iT); +} + +void takeMeasurements(Grid2D& grid) +{ + static T maxDrag = 0.0; + + OstreamManager clout(std::cout,"measurement"); + + auto& sLattice = grid.getSuperLattice(); + auto& sGeometry = grid.getSuperGeometry(); + auto& converter = grid.getConverter(); + + SuperLatticePhysPressure2D pressure(sLattice, converter); + AnalyticalFfromSuperF2D intpolatePressure(pressure, true); + SuperLatticePhysDrag2D dragF(sLattice, sGeometry, 5, converter); + + const T radiusCylinder = cylinderD/2; + + const T point1[2] { cylinderX - radiusCylinder, cylinderY }; + const T point2[2] { cylinderX + radiusCylinder, cylinderY }; + + T pressureInFrontOfCylinder, pressureBehindCylinder; + intpolatePressure(&pressureInFrontOfCylinder, point1); + intpolatePressure(&pressureBehindCylinder, point2); + + T pressureDrop = pressureInFrontOfCylinder - pressureBehindCylinder; + clout << "pressureDrop=" << pressureDrop; + + const int input[3] {}; + T drag[dragF.getTargetDim()] {}; + dragF(drag, input); + if (drag[0] > maxDrag) { + maxDrag = drag[0]; + }; + clout << "; drag=" << drag[0] << "; maxDrag: " << maxDrag << "; lift=" << drag[1] << endl; +} + +int main(int argc, char* argv[]) +{ + olbInit(&argc, &argv); + singleton::directories().setOutputDir("./tmp/"); + OstreamManager clout(std::cout,"main"); + + const Vector coarseOrigin {0.0, 0.0}; + const Vector coarseExtend {lx, ly}; + IndicatorCuboid2D coarseCuboid(coarseExtend, coarseOrigin); + + Grid2D coarseGrid( + coarseCuboid, + RelaxationTime(tau), + N, + PhysCharacteristics); + const Vector domainOrigin = coarseGrid.getSuperGeometry().getStatistics().getMinPhysR(0); + const Vector domainExtend = coarseGrid.getSuperGeometry().getStatistics().getPhysExtend(0); + + prepareGeometry(coarseGrid, domainOrigin, domainExtend); + + const auto coarseDeltaX = coarseGrid.getConverter().getPhysDeltaX(); + + const Vector fineExtend {10*cylinderD, domainExtend[1]-4*coarseDeltaX}; + const Vector fineOrigin {0.5*cylinderD, (domainExtend[1]-fineExtend[1])/2}; + + auto& fineGrid = coarseGrid.refine(fineOrigin, fineExtend); + prepareGeometry(fineGrid, domainOrigin, domainExtend); + disableRefinedArea(coarseGrid, fineGrid); + + const Vector fineExtend2 {6*cylinderD, fineGrid.getExtend()[1]-4*coarseDeltaX}; + const Vector fineOrigin2 {0.75*cylinderD, (domainExtend[1]-fineExtend2[1])/2}; + + auto& fineGrid2 = fineGrid.refine(fineOrigin2, fineExtend2); + prepareGeometry(fineGrid2, domainOrigin, domainExtend); + disableRefinedArea(fineGrid, fineGrid2); + + const Vector fineExtend3 {4*cylinderD, 2*cylinderD}; + const Vector fineOrigin3 {1*cylinderD, (domainExtend[1]-fineExtend3[1])/2}; + + auto& fineGrid3 = fineGrid2.refine(fineOrigin3, fineExtend3); + prepareGeometry(fineGrid3, domainOrigin, domainExtend); + disableRefinedArea(fineGrid2, fineGrid3); + + const Vector fineExtend4 {1.25*cylinderD, 1.25*cylinderD}; + const Vector fineOrigin4 {cylinderX - fineExtend4[0]/2, cylinderY - fineExtend4[1]/2}; + + auto& fineGrid4 = fineGrid3.refine(fineOrigin4, fineExtend4); + prepareGeometry(fineGrid4, domainOrigin, domainExtend); + disableRefinedArea(fineGrid3, fineGrid4); + + prepareLattice(coarseGrid); + prepareLattice(fineGrid); + prepareLattice(fineGrid2); + prepareLattice(fineGrid3); + prepareLattice(fineGrid4); + + clout << "Total number of active cells: " << coarseGrid.getActiveVoxelN() << endl; + clout << "Starting simulation..." << endl; + + const int statIter = coarseGrid.getConverter().getLatticeTime(0.05); + Timer timer( + coarseGrid.getConverter().getLatticeTime(maxPhysT), + coarseGrid.getSuperGeometry().getStatistics().getNvoxel()); + timer.start(); + + for (int iT = 0; iT <= coarseGrid.getConverter().getLatticeTime(maxPhysT); ++iT) { + setBoundaryValues(coarseGrid, iT); + + coarseGrid.collideAndStream(); + + if (iT%statIter == 0) { + timer.update(iT); + timer.printStep(); + + getResults("level0_", coarseGrid, iT); + getResults("level1_", fineGrid, iT); + getResults("level2_", fineGrid2, iT); + getResults("level3_", fineGrid3, iT); + getResults("level4_", fineGrid4, iT); + + takeMeasurements(fineGrid4); + } + } + + timer.stop(); + timer.printSummary(); +} -- cgit v1.2.3