From 94d3e79a8617f88dc0219cfdeedfa3147833719d Mon Sep 17 00:00:00 2001 From: Adrian Kummerlaender Date: Mon, 24 Jun 2019 14:43:36 +0200 Subject: Initialize at openlb-1-3 --- .../porousPoiseuille2d/porousPoiseuille2d.cpp | 478 +++++++++++++++++++++ 1 file changed, 478 insertions(+) create mode 100644 examples/porousMedia/porousPoiseuille2d/porousPoiseuille2d.cpp (limited to 'examples/porousMedia/porousPoiseuille2d/porousPoiseuille2d.cpp') diff --git a/examples/porousMedia/porousPoiseuille2d/porousPoiseuille2d.cpp b/examples/porousMedia/porousPoiseuille2d/porousPoiseuille2d.cpp new file mode 100644 index 0000000..91f3456 --- /dev/null +++ b/examples/porousMedia/porousPoiseuille2d/porousPoiseuille2d.cpp @@ -0,0 +1,478 @@ +/* Lattice Boltzmann sample, written in C++, using the OpenLB + * library + * + * Copyright (C) 2017 Davide Dapelo, Mathias J. Krause + * E-mail contact: info@openlb.net + * The most recent release of OpenLB can be downloaded at + * + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public + * License along with this program; if not, write to the Free + * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, + * Boston, MA 02110-1301, USA. + */ + +/* porousPoiseuille2d.cpp: + * Poiseuille flow through porous media. + * This implementation is the reproduction of the Guo and Zhao (2002)'s + * benchmark example A. The theoretical maximum velocity is calculated + * as in Equation 21, and the velocity profile as in Equation 23 of + * the original reference. + */ + +#include "olb2D.h" +#include "olb2D.hh" // use only generic version! + +#include +#include +#include +#include +#include + +using namespace olb; +using namespace olb::descriptors; +using namespace olb::graphics; +using namespace std; + +typedef double T; +#define DESCRIPTOR GuoZhaoD2Q9Descriptor +#define DYNAMICS GuoZhaoBGKdynamics +//#define DYNAMICS SmagorinskyGuoZhaoBGKdynamics + +/// Functional to calculate velocity profile on pipe with porous media. +template +class PorousPipe2D : public AnalyticalF2D { +protected: + std::vector axisPoint; + std::vector axisDirection; + T radius, rFactor, u0; + +public: + PorousPipe2D(std::vector axisPoint_, std::vector axisDirection_, T radius_, T rFactor_, T u0_); + bool operator()(T output[], const T x[]) override; +}; + +template +PorousPipe2D::PorousPipe2D(std::vector axisPoint_, std::vector axisDirection_, T radius_, T rFactor_, T u0_) + : AnalyticalF2D(2) +{ + this->getName() = "PorousPipe2D"; + axisPoint.resize(2); + axisDirection.resize(2); + for (int i = 0; i < 2; ++i) { + axisDirection[i] = axisDirection_[i]; + axisPoint[i] = axisPoint_[i]; + } + radius = radius_; + rFactor = rFactor_; + u0 = u0_; +} + +template +bool PorousPipe2D::operator()(T output[], const T x[]) +{ + output[0] = axisDirection[0]*u0*(cosh(rFactor*radius) - cosh(rFactor*x[1] - rFactor*radius))/(cosh(rFactor*radius) - 1); + output[1] = axisDirection[1]*u0*(cosh(rFactor*radius) - cosh(rFactor*x[0] - rFactor*radius))/(cosh(rFactor*radius) - 1); + + return true; +} + +/// Stores geometry information in form of material numbers +void prepareGeometry(UnitConverter const& converter, T lx, T ly, + SuperGeometry2D& superGeometry) +{ + + OstreamManager clout(std::cout,"prepareGeometry"); + clout << "Prepare Geometry ..." << std::endl; + + superGeometry.rename(0,2); + + std::vector extend(2,T()); + extend[0] = lx; + extend[1] = ly - 1.8*converter.getPhysLength(1); + std::vector origin(2,T()); + origin[1] = 0.9*converter.getPhysLength(1); + IndicatorCuboid2D cuboid2(extend, origin); + + superGeometry.rename(2,1,cuboid2); + + /// Removes all not needed boundary voxels outside the surface + superGeometry.clean(); + /// Removes all not needed boundary voxels inside the surface + superGeometry.innerClean(); + superGeometry.checkForErrors(); + + superGeometry.print(); + + clout << "Prepare Geometry ... OK" << std::endl; +} + +/// Set up the geometry of the simulation +void prepareLattice(UnitConverter const& converter, T lx, T ly, + T epsilonIn, T KIn, T bodyForceIn, + SuperLattice2D& sLattice, + Dynamics& bulkDynamics, + sOnLatticeBoundaryCondition2D& sBoundaryCondition, + SuperGuoZhaoInstantiator2D >& sGuoZhaoInstantiator, + SuperGeometry2D& superGeometry ) +{ + + OstreamManager clout(std::cout,"prepareLattice"); + clout << "Prepare Lattice ..." << std::endl; + + T omega = converter.getLatticeRelaxationFrequency(); + + /// Material=0 -->do nothing + sLattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics()); + + /// Material=1 -->bulk dynamics + sLattice.defineDynamics(superGeometry, 1, &bulkDynamics); + + /// Material=2 -->bulk dynamics + sLattice.defineDynamics(superGeometry, 2, &bulkDynamics); + + /// Setting of the boundary conditions + sBoundaryCondition.addVelocityBoundary(superGeometry, 2, omega); + + /// Initial conditions + std::vector epsilonValue(1, epsilonIn); + AnalyticalConst2D epsilon(epsilonValue); + + std::vector KValue(1, KIn); + AnalyticalConst2D K(KValue); + + std::vector bodyForceValue (2, (T)0); + bodyForceValue[0] = bodyForceIn; + AnalyticalConst2D bodyForce(bodyForceValue); + + // Initialize porosity + sGuoZhaoInstantiator.defineEpsilon(superGeometry, 1, epsilon); + sGuoZhaoInstantiator.defineEpsilon(superGeometry, 2, epsilon); + + sGuoZhaoInstantiator.defineK(converter, superGeometry, 1, K); + sGuoZhaoInstantiator.defineK(converter, superGeometry, 2, K); + + sGuoZhaoInstantiator.defineNu(converter, superGeometry, 1); + sGuoZhaoInstantiator.defineNu(converter, superGeometry, 2); + + sGuoZhaoInstantiator.defineBodyForce(converter, superGeometry, 1, bodyForce); + sGuoZhaoInstantiator.defineBodyForce(converter, superGeometry, 2, bodyForce); + + /// Make the lattice ready for simulation + clout << "Ready to initialize the lattice..." << std::endl; + sLattice.initialize(); + + clout << "Prepare Lattice ... OK" << std::endl; +} + +/// Compute error norms +void error( SuperGeometry2D& superGeometry, + SuperLattice2D& sLattice, + UnitConverter const& converter, + Dynamics& bulkDynamics, + AnalyticalF2D& uSol) { + + OstreamManager clout( std::cout,"error" ); + + int input[1] = { }; + T result[1] = { }; + + SuperLatticePhysVelocity2D u( sLattice,converter ); + auto indicatorF = superGeometry.getMaterialIndicator(1); + + // velocity error + SuperAbsoluteErrorL1Norm2D absVelocityErrorNormL1(u, uSol, indicatorF); + absVelocityErrorNormL1(result, input); + clout << "velocity-L1-error(abs)=" << result[0]; + SuperRelativeErrorL1Norm2D relVelocityErrorNormL1(u, uSol, indicatorF); + relVelocityErrorNormL1(result, input); + clout << "; velocity-L1-error(rel)=" << result[0] << std::endl; + + SuperAbsoluteErrorL2Norm2D absVelocityErrorNormL2(u, uSol, indicatorF); + absVelocityErrorNormL2(result, input); + clout << "velocity-L2-error(abs)=" << result[0]; + SuperRelativeErrorL2Norm2D relVelocityErrorNormL2(u, uSol, indicatorF); + relVelocityErrorNormL2(result, input); + clout << "; velocity-L2-error(rel)=" << result[0] << std::endl; + + SuperAbsoluteErrorLinfNorm2D absVelocityErrorNormLinf(u, uSol, indicatorF); + absVelocityErrorNormLinf(result, input); + clout << "velocity-Linf-error(abs)=" << result[0] << std::endl; +} + +/// Output to console and files +void getResults(SuperLattice2D& sLattice, Dynamics& bulkDynamics, + UnitConverter const& converter, T lx, T ly, T G, T K, T nu, T epsilon, T maxPhysT, int iT, int numOfIterations, + SuperGeometry2D& superGeometry, Timer& timer, bool hasConverged) +{ + + OstreamManager clout(std::cout,"getResults"); + + SuperVTMwriter2D vtkWriter("porousPoiseuille2d"); + SuperLatticePhysVelocity2D velocity(sLattice, converter); + SuperLatticePhysPressure2D pressure(sLattice, converter); +// SuperLatticeEpsilon2D epsilonVTM(sLattice, converter); +// SuperLatticePhysK2D KVTM(sLattice, converter); +// SuperLatticePhysBodyForce2D bodyForce(sLattice, converter); + vtkWriter.addFunctor( velocity ); + vtkWriter.addFunctor( pressure ); +// vtkWriter.addFunctor( epsilonVTM ); +// vtkWriter.addFunctor( KVTM ); +// vtkWriter.addFunctor( bodyForce ); + + const int vtkIter = converter.getLatticeTime(maxPhysT/numOfIterations); + const int statIter = converter.getLatticeTime(maxPhysT/numOfIterations); + + static Gnuplot gplot_uCentre( "uCentre" ); + static Gnuplot gplot_profile( "profile" ); + + if (iT==0) { + /// Writes the geometry, cuboid no. and rank no. as vti file for visualization + SuperLatticeGeometry2D geometry(sLattice, superGeometry); + SuperLatticeCuboid2D cuboid(sLattice); + SuperLatticeRank2D rank(sLattice); + superGeometry.rename(0,2); + vtkWriter.write(geometry); + vtkWriter.write(cuboid); + vtkWriter.write(rank); + + vtkWriter.createMasterFile(); + } + + /// Writes the vtk files and profile text file + T Ly = converter.getLatticeLength(ly); + AnalyticalFfromSuperF2D intpolateVelocity( velocity, true ); + T centre[2] = {converter.getCharPhysLength()/2, converter.getCharPhysLength()/2}; + T uCentre[2]; + intpolateVelocity(uCentre, centre); + T r = sqrt(epsilon/K); + T dx = converter.getPhysDeltaX(); + const T radius = ly/2.; + std::vector axisPoint(2,T()); + axisPoint[0] = lx/2.; + axisPoint[1] = ly/2.; + std::vector axisDirection(2,T()); + axisDirection[0] = 1; + axisDirection[1] = 0; + PorousPipe2D uSol(axisPoint, axisDirection, radius, r, uCentre[0]); + + + if (iT%vtkIter==0 || hasConverged) { + vtkWriter.write(iT); + + SuperEuklidNorm2D normVel(velocity); + BlockReduction2D2D planeReduction( normVel, 600, BlockDataSyncMode::ReduceOnly ); + // write output of velocity as JPEG + heatmap::write(planeReduction, iT); + + ofstream *ofile = nullptr; + if (singleton::mpi().isMainProcessor()) { + ofile = new ofstream((singleton::directories().getLogOutDir()+"centerVel.dat").c_str()); + } + for (int iY=0; iY<=Ly; ++iY) { + T point[2]= {T(),T()}; + point[0] = lx/2.; + point[1] = (T)iY*converter.getPhysLength(1); + T analytical[2] = {T(),T()}; + uSol(analytical,point); + SuperLatticePhysVelocity2D velocity(sLattice, converter); + AnalyticalFfromSuperF2D intpolateVelocity(velocity, true); + T numerical[2] = {T(),T()}; + intpolateVelocity(numerical,point); + if (singleton::mpi().isMainProcessor()) { + *ofile << iY*dx << " " << analytical[0] + << " " << numerical[0] << "\n"; + if ( iT == .8*converter.getLatticeTime( maxPhysT ) ) { +// if ( iT == converter.numTimeSteps( maxPhysT )-1 ) { + gplot_profile.setData( point[1], {numerical[0], analytical[0]}, {"Numerical profile", "Analytical profile"}, "bottom right" ); + gplot_profile.writePNG(); + } + } + } + delete ofile; + } + + /// Writes output on the console + if (iT%statIter==0 || hasConverged) { + /// Timer console output + timer.update(iT); + timer.printStep(); + + /// Lattice statistics console output + sLattice.getStatistics().print(iT,converter.getPhysTime(iT)); + + /// Error norms + error(superGeometry, sLattice, converter, bulkDynamics, uSol); + + AnalyticalFfromSuperF2D intpolatePressure( pressure, true ); + AnalyticalFfromSuperF2D intpolateVelocity( velocity, true ); + T centre[2] = {converter.getCharPhysLength()/2, converter.getCharPhysLength()/2}; + T uCentre[2]; + intpolateVelocity(uCentre, centre); + + T uMaxMeas = sLattice.getStatistics().getMaxU() / converter.getCharLatticeVelocity(); + T uMaxTheo = G*K/nu*(1.-1./cosh(converter.getCharPhysLength()/2 * sqrt(epsilon/K))); + clout << "uMaxTheo=" << uMaxTheo + << "; uMaxMeas=" << uMaxMeas + << "; uCentre=" << uCentre[0] + << std::endl; + + gplot_uCentre.setData( converter.getPhysTime( iT ), uCentre[0], "Centre velocity", "bottom right" ); + gplot_uCentre.writePNG( iT, maxPhysT ); + } +} + +int main(int argc, char* argv[]) +{ + + /// === 1st Step: Initialization === + olbInit(&argc, &argv); + singleton::directories().setOutputDir("./tmp/"); + OstreamManager clout(std::cout,"main"); + // display messages from every single mpi process + //clout.setMultiOutput(true); + + // Parameters for the simulation setup + int nx; // length of the channel + int ny; // height of the channel + int N; // resolution of the model + T tau; // Relaxation time + T Re; // Reynolds number + T Da; // Darcy number + + T epsilon; // Porosity (non-dimensional) + T K; // Permeability (SI units) + + T maxPhysT; // max. simulation time in s, SI unit + int numOfIterations; // number of iterations reported in paraview-Gnuplot. + T residuum; + + string fName("input.xml"); + XMLreader config(fName); + + config["setup"]["nx"].read(nx); + config["setup"]["ny"].read(ny); + config["setup"]["tau"].read(tau); + config["setup"]["N"].read(N); + config["setup"]["Da"].read(Da); + config["setup"]["Re"].read(Re); + config["porous"]["epsilon"].read(epsilon); + config["porous"]["K"].read(K); + config["time"]["maxPhysT"].read(maxPhysT); + config["time"]["numOfIterations"].read(numOfIterations); + config["convergence"]["residuum"].read(residuum); + + T charL = sqrt(K/Da); + T lx = nx*charL; + T ly = ny*charL; + + //T latticeU = Re*(tau-(T).5)/((T)3*N); + T charU = (T)1.; + T bodyForceValue = charU*charU*charL / ( Re*K*((T)1. - (T)1./cosh(charL/(T)2 * sqrt(epsilon/K))) ); + T nu = bodyForceValue*K/charU*((T)1. - (T)1./cosh(charL/(T)2 * sqrt(epsilon/K))); + + UnitConverterFromResolutionAndRelaxationTime const converter( + int {N}, // resolution: number of voxels per charPhysL + (T) tau, // latticeRelaxationTime: relaxation time, have to be greater than 0.5! + (T) charL, // charPhysLength: reference length of simulation geometry + (T) charU, // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__ + (T) nu, // physViscosity: physical kinematic viscosity in __m^2 / s__ + (T) 1.0 // physDensity: physical density in __kg / m^3__ + ); + // Prints the converter log as console output + converter.print(); + // Writes the converter log in a file + converter.write("porousPoiseuille2d"); + + /// === 2nd Step: Prepare Geometry === + std::vector extend(2,T()); + extend[0] = lx; + extend[1] = ly; + std::vector origin(2,T()); + IndicatorCuboid2D cuboid(extend, origin); + + /// Instantiation of a cuboidGeometry with weights +#ifdef PARALLEL_MODE_MPI + const int noOfCuboids = singleton::mpi().getSize(); +#else + const int noOfCuboids = 7; +#endif + CuboidGeometry2D cuboidGeometry(cuboid, converter.getPhysDeltaX(), noOfCuboids); + + /// Periodic boundaries in x-direction + cuboidGeometry.setPeriodicity(true, false); + + /// Instantiation of a loadBalancer + HeuristicLoadBalancer loadBalancer(cuboidGeometry); + + /// Instantiation of a superGeometry + SuperGeometry2D superGeometry(cuboidGeometry, loadBalancer, 2); + + prepareGeometry(converter, lx, ly, superGeometry); + + /// === 3rd Step: Prepare Lattice === + SuperLattice2D sLattice(superGeometry); + + DYNAMICS bulkDynamics ( + converter.getLatticeRelaxationFrequency(), + instances::getBulkMomenta() + ); + + SuperGuoZhaoInstantiator2D > sGuoZhaoInstantiator(sLattice); + + // choose between local and non-local boundary condition + sOnLatticeBoundaryCondition2D sBoundaryCondition(sLattice); + createInterpBoundaryCondition2D > (sBoundaryCondition); + + prepareLattice(converter, lx, ly, epsilon, K, bodyForceValue, sLattice, bulkDynamics, sBoundaryCondition, sGuoZhaoInstantiator, superGeometry); + + SuperExternal2D externalForce(superGeometry, sLattice, 2); + SuperExternal2D externalEpsilon(superGeometry, sLattice, 2); + SuperExternal2D externalK(superGeometry, sLattice, 2); + SuperExternal2D externalNu(superGeometry, sLattice, 2); + SuperExternal2D externalBodyForce(superGeometry, sLattice, 2); + + /// === 4th Step: Main Loop with Timer === + clout << "starting simulation..." << endl; + Timer timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel() ); + util::ValueTracer converge( converter.getLatticeTime(maxPhysT/numOfIterations), residuum ); + timer.start(); + + for (int iT = 0; iT < converter.getLatticeTime(maxPhysT); ++iT) { + if ( converge.hasConverged() ) { + clout << "Simulation converged." << endl; + getResults(sLattice, bulkDynamics, converter, lx, ly, bodyForceValue, K, converter.getPhysViscosity(), epsilon, maxPhysT, iT, numOfIterations, superGeometry, timer, converge.hasConverged() ); + break; + } + + /// === 5th Step: Definition of Initial and Boundary Conditions === + // in this application no boundary conditions have to be adjusted + + /// === 6th Step: Collide and Stream Execution === + sLattice.collideAndStream(); + + externalForce.communicate(); + externalEpsilon.communicate(); + externalK.communicate(); + externalNu.communicate(); + externalBodyForce.communicate(); + + /// === 7th Step: Computation and Output of the Results === + getResults(sLattice, bulkDynamics, converter, lx, ly, bodyForceValue, K, converter.getPhysViscosity(), epsilon, maxPhysT, iT, numOfIterations, superGeometry, timer, converge.hasConverged() ); + converge.takeValue( sLattice.getStatistics().getAverageEnergy(), true ); + } + + timer.stop(); + timer.printSummary(); +} + -- cgit v1.2.3