From 94d3e79a8617f88dc0219cfdeedfa3147833719d Mon Sep 17 00:00:00 2001 From: Adrian Kummerlaender Date: Mon, 24 Jun 2019 14:43:36 +0200 Subject: Initialize at openlb-1-3 --- .../thermal/rayleighBenard2d/rayleighBenard2d.cpp | 346 +++++++++++++++++++++ 1 file changed, 346 insertions(+) create mode 100644 examples/thermal/rayleighBenard2d/rayleighBenard2d.cpp (limited to 'examples/thermal/rayleighBenard2d/rayleighBenard2d.cpp') diff --git a/examples/thermal/rayleighBenard2d/rayleighBenard2d.cpp b/examples/thermal/rayleighBenard2d/rayleighBenard2d.cpp new file mode 100644 index 0000000..1fe1385 --- /dev/null +++ b/examples/thermal/rayleighBenard2d/rayleighBenard2d.cpp @@ -0,0 +1,346 @@ +/* Lattice Boltzmann sample, written in C++, using the OpenLB + * library + * + * Copyright (C) 2008 Orestis Malaspinas + * E-mail contact: info@openlb.net + * The most recent release of OpenLB can be downloaded at + * + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public + * License along with this program; if not, write to the Free + * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, + * Boston, MA 02110-1301, USA. + */ + +/* rayleighBenard2d.cpp: + * Rayleigh-Benard convection rolls in 2D, simulated with + * the thermal LB model by Z. Guo e.a., between a hot plate at + * the bottom and a cold plate at the top. + */ + + +#include "olb2D.h" +#include "olb2D.hh" // use only generic version! + +using namespace olb; +using namespace olb::descriptors; +using namespace olb::graphics; +using namespace std; + +typedef double T; + +#define NSDESCRIPTOR D2Q9 +#define TDESCRIPTOR D2Q5 + +// Parameters for the simulation setup +const T lx = 2.; // length of the channel +const T ly = 1.; // height of the channel +const int N = 10; // resolution of the model +const T Ra = 1e4; // Rayleigh number +const T Pr = 0.71; // Prandtl number +const T maxPhysT = 1000.; // max. simulation time in s, SI unit +const T epsilon = 1.e-5; // precision of the convergence (residuum) + +const T Thot = 274.15; // temperature of the lower wall in Kelvin +const T Tcold = 273.15; // temperature of the fluid in Kelvin +const T Tperturb = 1./5. * Tcold + 4./5. * Thot; // temperature of the perturbation + +/// Stores geometry information in form of material numbers +void prepareGeometry(SuperGeometry2D& superGeometry, + ThermalUnitConverter &converter) +{ + + OstreamManager clout(std::cout,"prepareGeometry"); + clout << "Prepare Geometry ..." << std::endl; + + superGeometry.rename(0,2); + superGeometry.rename(2,1,0,1); + + std::vector extend( 2, T(0) ); + extend[0] = lx; + extend[1] = converter.getPhysLength(1); + std::vector origin( 2, T(0) ); + IndicatorCuboid2D bottom(extend, origin); + + origin[1] = ly-converter.getPhysLength(1); + IndicatorCuboid2D top(extend, origin); + + origin[0] = lx/2.; + origin[1] = converter.getPhysLength(1); + extend[0] = converter.getPhysLength(1); + extend[1] = converter.getPhysLength(1); + IndicatorCuboid2D perturbation(extend, origin); + + /// Set material numbers for bottom, top and pertubation + superGeometry.rename(2,2,1,bottom); + superGeometry.rename(2,3,1,top); + superGeometry.rename(1,4,perturbation); + + /// Removes all not needed boundary voxels outside the surface + superGeometry.clean(); + /// Removes all not needed boundary voxels inside the surface + superGeometry.innerClean(); + superGeometry.checkForErrors(); + + superGeometry.print(); + + clout << "Prepare Geometry ... OK" << std::endl; +} + +void prepareLattice( ThermalUnitConverter &converter, + SuperLattice2D& NSlattice, + SuperLattice2D& ADlattice, + Dynamics &bulkDynamics, + Dynamics& advectionDiffusionBulkDynamics, + sOnLatticeBoundaryCondition2D& NSboundaryCondition, + sOnLatticeBoundaryCondition2D& TboundaryCondition, + SuperGeometry2D& superGeometry ) +{ + + OstreamManager clout(std::cout,"prepareLattice"); + + T Tomega = converter.getLatticeThermalRelaxationFrequency(); + + /// define lattice Dynamics + clout << "defining dynamics" << endl; + + ADlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics()); + NSlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics()); + + ADlattice.defineDynamics(superGeometry, 1, &advectionDiffusionBulkDynamics); + ADlattice.defineDynamics(superGeometry, 2, &advectionDiffusionBulkDynamics); + ADlattice.defineDynamics(superGeometry, 3, &advectionDiffusionBulkDynamics); + ADlattice.defineDynamics(superGeometry, 4, &advectionDiffusionBulkDynamics); + NSlattice.defineDynamics(superGeometry, 1, &bulkDynamics); + NSlattice.defineDynamics(superGeometry, 2, &instances::getBounceBack()); + NSlattice.defineDynamics(superGeometry, 3, &instances::getBounceBack()); + NSlattice.defineDynamics(superGeometry, 4, &bulkDynamics); + + /// sets boundary + TboundaryCondition.addTemperatureBoundary(superGeometry, 2, Tomega); + TboundaryCondition.addTemperatureBoundary(superGeometry, 3, Tomega); + + /// define initial conditions + AnalyticalConst2D rho(1.); + AnalyticalConst2D u0(0.0, 0.0); + AnalyticalConst2D T_cold(converter.getLatticeTemperature(Tcold)); + AnalyticalConst2D T_hot(converter.getLatticeTemperature(Thot)); + AnalyticalConst2D T_perturb(converter.getLatticeTemperature(Tperturb)); + + /// for each material set Rho, U and the Equilibrium + NSlattice.defineRhoU(superGeometry, 1, rho, u0); + NSlattice.iniEquilibrium(superGeometry, 1, rho, u0); + NSlattice.defineRhoU(superGeometry, 2, rho, u0); + NSlattice.iniEquilibrium(superGeometry, 2, rho, u0); + NSlattice.defineRhoU(superGeometry, 3, rho, u0); + NSlattice.iniEquilibrium(superGeometry, 3, rho, u0); + NSlattice.defineRhoU(superGeometry, 4, rho, u0); + NSlattice.iniEquilibrium(superGeometry, 4, rho, u0); + + ADlattice.defineRho(superGeometry, 1, T_cold); + ADlattice.iniEquilibrium(superGeometry, 1, T_cold, u0); + ADlattice.defineRho(superGeometry, 2, T_hot); + ADlattice.iniEquilibrium(superGeometry, 2, T_hot, u0); + ADlattice.defineRho(superGeometry, 3, T_cold); + ADlattice.iniEquilibrium(superGeometry, 3, T_cold, u0); + ADlattice.defineRho(superGeometry, 4, T_perturb); + ADlattice.iniEquilibrium(superGeometry, 4, T_perturb, u0); + + /// Make the lattice ready for simulation + NSlattice.initialize(); + ADlattice.initialize(); + + clout << "Prepare Lattice ... OK" << std::endl; +} + +void setBoundaryValues(ThermalUnitConverter &converter, + SuperLattice2D& NSlattice, + SuperLattice2D& ADlattice, + int iT, SuperGeometry2D& superGeometry) +{ + // nothing to do here +} + +void getResults(ThermalUnitConverter &converter, + SuperLattice2D& NSlattice, + SuperLattice2D& ADlattice, int iT, + SuperGeometry2D& superGeometry, + Timer& timer, + bool converged) +{ + + OstreamManager clout(std::cout,"getResults"); + + SuperVTMwriter2D vtkWriter("rayleighBenard2d"); + SuperLatticePhysVelocity2D velocity(NSlattice, converter); + SuperLatticePhysPressure2D presure(NSlattice, converter); + SuperLatticePhysTemperature2D temperature(ADlattice, converter); + vtkWriter.addFunctor( presure ); + vtkWriter.addFunctor( velocity ); + vtkWriter.addFunctor( temperature ); + + const int saveIter = converter.getLatticeTime(10.0); + + if (iT == 0) { + /// Writes the converter log file + // writeLogFile(converter,"rayleighBenard2d"); + + /// Writes the geometry, cuboid no. and rank no. as vti file for visualization + SuperLatticeGeometry2D geometry(NSlattice, superGeometry); + SuperLatticeCuboid2D cuboid(NSlattice); + SuperLatticeRank2D rank(NSlattice); + vtkWriter.write(geometry); + vtkWriter.write(cuboid); + vtkWriter.write(rank); + + vtkWriter.createMasterFile(); + } + + /// Writes the VTK files and prints statistics + if (iT%saveIter == 0 || converged) { + /// Timer console output + timer.update(iT); + timer.printStep(); + + /// Lattice statistics console output + NSlattice.getStatistics().print(iT,converter.getPhysTime(iT)); + + vtkWriter.write(iT); + + BlockReduction2D2D planeReduction(temperature, 600, BlockDataSyncMode::ReduceOnly); + BlockGifWriter gifWriter; + gifWriter.write(planeReduction, Tcold-0.1, Thot+0.1, iT, "temperature"); + } + +} + +int main(int argc, char *argv[]) +{ + + /// === 1st Step: Initialization === + OstreamManager clout(std::cout,"main"); + olbInit(&argc, &argv); + singleton::directories().setOutputDir("./tmp/"); + + ThermalUnitConverter converter( + (T) 0.1/N, // physDeltaX + (T) 0.1 / (1e-5 / 0.1 * sqrt( Ra / Pr)) * 0.1 / N, // physDeltaT = charLatticeVelocity / charPhysVelocity * physDeltaX + (T) 0.1, // charPhysLength + (T) 1e-5 / 0.1 * sqrt( Ra / Pr ), // charPhysVelocity + (T) 1e-5, // physViscosity + (T) 1.0, // physDensity + (T) 0.03, // physThermalConductivity + (T) Pr * 0.03 / 1e-5 / 1.0, // physSpecificHeatCapacity + (T) Ra * 1e-5 * 1e-5 / Pr / 9.81 / (Thot - Tcold) / pow(0.1, 3), // physThermalExpansionCoefficient + (T) Tcold, // charPhysLowTemperature + (T) Thot // charPhysHighTemperature + ); + converter.print(); + + /// === 2nd Step: Prepare Geometry === + std::vector extend(2,T()); + extend[0] = lx; + extend[1] = ly; + std::vector origin(2,T()); + IndicatorCuboid2D cuboid(extend, origin); + + /// Instantiation of a cuboidGeometry with weights +#ifdef PARALLEL_MODE_MPI + const int noOfCuboids = singleton::mpi().getSize(); +#else + const int noOfCuboids = 7; +#endif + CuboidGeometry2D cuboidGeometry(cuboid, converter.getPhysDeltaX(), noOfCuboids); + + cuboidGeometry.setPeriodicity(true, false); + + HeuristicLoadBalancer loadBalancer(cuboidGeometry); + + SuperGeometry2D superGeometry(cuboidGeometry, loadBalancer, 2); + + prepareGeometry(superGeometry, converter); + + /// === 3rd Step: Prepare Lattice === + + SuperLattice2D ADlattice(superGeometry); + SuperLattice2D NSlattice(superGeometry); + + sOnLatticeBoundaryCondition2D NSboundaryCondition(NSlattice); + createLocalBoundaryCondition2D(NSboundaryCondition); + + sOnLatticeBoundaryCondition2D TboundaryCondition(ADlattice); + createAdvectionDiffusionBoundaryCondition2D(TboundaryCondition); + + ForcedBGKdynamics NSbulkDynamics( + converter.getLatticeRelaxationFrequency(), + instances::getBulkMomenta()); + + AdvectionDiffusionBGKdynamics TbulkDynamics ( + converter.getLatticeThermalRelaxationFrequency(), + instances::getAdvectionDiffusionBulkMomenta() + ); + + // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!// + // This coupling must be necessarily be put on the Navier-Stokes lattice!! + // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!// + + std::vector dir{0.0, 1.0}; + + T boussinesqForcePrefactor = 9.81 / converter.getConversionFactorVelocity() * converter.getConversionFactorTime() * + converter.getCharPhysTemperatureDifference() * converter.getPhysThermalExpansionCoefficient(); + + NavierStokesAdvectionDiffusionCouplingGenerator2D coupling(0, converter.getLatticeLength(lx), 0, converter.getLatticeLength(ly), boussinesqForcePrefactor, converter.getLatticeTemperature(Tcold), 1., dir); + + NSlattice.addLatticeCoupling(coupling, ADlattice); + NSlattice.addLatticeCoupling(superGeometry, 2, coupling, ADlattice); + NSlattice.addLatticeCoupling(superGeometry, 3, coupling, ADlattice); + NSlattice.addLatticeCoupling(superGeometry, 4, coupling, ADlattice); + + prepareLattice(converter, + NSlattice, ADlattice, + NSbulkDynamics, TbulkDynamics, + NSboundaryCondition, TboundaryCondition, superGeometry ); + + /// === 4th Step: Main Loop with Timer === + Timer timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel() ); + timer.start(); + + util::ValueTracer converge(converter.getLatticeTime(50.),epsilon); + for (int iT = 0; iT < converter.getLatticeTime(maxPhysT); ++iT) { + + if (converge.hasConverged()) { + clout << "Simulation converged." << endl; + getResults(converter, NSlattice, ADlattice, iT, superGeometry, timer, converge.hasConverged()); + + clout << "Time " << iT << "." << std::endl; + + break; + } + + /// === 5th Step: Definition of Initial and Boundary Conditions === + setBoundaryValues(converter, NSlattice, ADlattice, iT, superGeometry); + + /// === 6th Step: Collide and Stream Execution === + ADlattice.collideAndStream(); + NSlattice.collideAndStream(); + + NSlattice.executeCoupling(); + + /// === 7th Step: Computation and Output of the Results === + getResults(converter, NSlattice, ADlattice, iT, superGeometry, timer, converge.hasConverged()); + converge.takeValue(ADlattice.getStatistics().getAverageEnergy(),true); + } + + timer.stop(); + timer.printSummary(); +} -- cgit v1.2.3