From 94d3e79a8617f88dc0219cfdeedfa3147833719d Mon Sep 17 00:00:00 2001 From: Adrian Kummerlaender Date: Mon, 24 Jun 2019 14:43:36 +0200 Subject: Initialize at openlb-1-3 --- examples/thermal/squareCavity3d/squareCavity3d.cpp | 518 +++++++++++++++++++++ 1 file changed, 518 insertions(+) create mode 100644 examples/thermal/squareCavity3d/squareCavity3d.cpp (limited to 'examples/thermal/squareCavity3d/squareCavity3d.cpp') diff --git a/examples/thermal/squareCavity3d/squareCavity3d.cpp b/examples/thermal/squareCavity3d/squareCavity3d.cpp new file mode 100644 index 0000000..81d5028 --- /dev/null +++ b/examples/thermal/squareCavity3d/squareCavity3d.cpp @@ -0,0 +1,518 @@ +/* Lattice Boltzmann sample, written in C++, using the OpenLB + * library + * + * Copyright (C) 2008 Orestis Malaspinas + * E-mail contact: info@openlb.net + * The most recent release of OpenLB can be downloaded at + * + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public + * License along with this program; if not, write to the Free + * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, + * Boston, MA 02110-1301, USA. + */ + +// natural convection of air in a square cavity in 3D + +#include "olb3D.h" +#include "olb3D.hh" // use only generic version! + +using namespace olb; +using namespace olb::descriptors; +using namespace olb::graphics; +using namespace std; + +typedef double T; + +#define NSDESCRIPTOR D3Q19 +#define TDESCRIPTOR D3Q7 + +// Parameters for the simulation setup +T Ra = 1e3; // Rayleigh-Zahl +const T Pr = 0.71; // Prandtl-Zahl + +T lx; + +int N = 64; // resolution of the model + +const T maxPhysT = 1e4; // max. simulation time in s, SI unit +const T epsilon = 1.e-3; // precision of the convergence (residuum) + +const T Tcold = 275.15; +const T Thot = 285.15; +const T Tmean = (Tcold + Thot) / 2.0; + +/// Values from the literature studies from Davis +T LitVelocity3[] = { 3.649, 3.696, 1.013 }; +T LitPosition3[] = { 0.813, 0.178 }; +T LitVelocity4[] = { 16.178, 19.617, 1.212 }; +T LitPosition4[] = { 0.823, 0.119 }; +T LitVelocity5[] = { 34.730, 68.590, 1.975 }; +T LitPosition5[] = { 0.855, 0.066 }; +T LitVelocity6[] = { 64.530, 219.36, 3.400 }; +T LitPosition6[] = { 0.850, 0.036 }; +T LitNusselt3 = 1.117; +T LitNusselt4 = 2.238; +T LitNusselt5 = 4.509; +T LitNusselt6 = 8.817; + +/// Compute the nusselt number at the left wall +T computeNusselt(SuperGeometry3D& superGeometry, + SuperLattice3D& NSlattice, + SuperLattice3D& ADlattice) +{ + int voxel = 0, material = 0; + T T_x = 0, T_xplus1 = 0, T_xplus2 = 0; + T q = 0; + + for (int iC = 0; iC < NSlattice.getLoadBalancer().size(); iC++) { + int ny = NSlattice.getBlockLattice(iC).getNy(); + + int iX = 0; + int iZ = 1; + + for (int iY = 0; iY < ny; ++iY) { + material = superGeometry.getBlockGeometry(iC).getMaterial(iX,iY,iZ); + + T_x = ADlattice.getBlockLattice(iC).get(iX,iY,iZ).computeRho(); + T_xplus1 = ADlattice.getBlockLattice(iC).get(iX+1,iY,iZ).computeRho(); + T_xplus2 = ADlattice.getBlockLattice(iC).get(iX+2,iY,iZ).computeRho(); + + if ( material == 2 ) { + q += (3.0*T_x - 4.0*T_xplus1 + 1.0*T_xplus2)/2.0*N; + voxel++; + } + } + } + +#ifdef PARALLEL_MODE_MPI + singleton::mpi().reduceAndBcast(q, MPI_SUM); + singleton::mpi().reduceAndBcast(voxel, MPI_SUM); +#endif + + return q / (T)voxel; +} + +/// Stores geometry information in form of material numbers +void prepareGeometry(SuperGeometry3D& superGeometry, + ThermalUnitConverter &converter) +{ + + OstreamManager clout(std::cout,"prepareGeometry"); + clout << "Prepare Geometry ..." << std::endl; + + superGeometry.rename(0,4); + + std::vector extend(3,T()); + extend[0] = lx; + extend[1] = lx; + extend[2] = 3.0 * converter.getPhysLength(1); + std::vector origin(3,T()); + origin[0] = converter.getPhysLength(1); + origin[1] = 0.5*converter.getPhysLength(1); + origin[2] = 0.0; + IndicatorCuboid3D cuboid2(extend, origin); + + superGeometry.rename(4,1,cuboid2); + + std::vector extendwallleft(3,T(0)); + extendwallleft[0] = converter.getPhysLength(1); + extendwallleft[1] = lx; + extendwallleft[2] = 0.1; + std::vector originwallleft(3,T(0)); + originwallleft[0] = 0.0; + originwallleft[1] = 0.0; + originwallleft[2] = 0.0; + IndicatorCuboid3D wallleft(extendwallleft, originwallleft); + + std::vector extendwallright(3,T(0)); + extendwallright[0] = converter.getPhysLength(1); + extendwallright[1] = lx; + extendwallright[2] = 0.1; + std::vector originwallright(3,T(0)); + originwallright[0] = lx+converter.getPhysLength(1); + originwallright[1] = 0.0; + originwallright[2] = 0.0; + IndicatorCuboid3D wallright(extendwallright, originwallright); + + superGeometry.rename(4,2,1,wallleft); + superGeometry.rename(4,3,1,wallright); + + + /// Removes all not needed boundary voxels outside the surface + superGeometry.clean(); + /// Removes all not needed boundary voxels inside the surface + superGeometry.innerClean(); + superGeometry.checkForErrors(); + + superGeometry.print(); + + clout << "Prepare Geometry ... OK" << std::endl; +} + +void prepareLattice( ThermalUnitConverter &converter, + SuperLattice3D& NSlattice, + SuperLattice3D& ADlattice, + Dynamics &bulkDynamics, + Dynamics& advectionDiffusionBulkDynamics, + sOnLatticeBoundaryCondition3D& NSboundaryCondition, + sOnLatticeBoundaryCondition3D& TboundaryCondition, + SuperGeometry3D& superGeometry ) +{ + + OstreamManager clout(std::cout,"prepareLattice"); + clout << "Prepare Lattice ..." << std::endl; + + T omega = converter.getLatticeRelaxationFrequency(); + T Tomega = converter.getLatticeThermalRelaxationFrequency(); + + /// define lattice Dynamics + ADlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics()); + NSlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics()); + + ADlattice.defineDynamics(superGeometry.getMaterialIndicator({1, 2, 3}), &advectionDiffusionBulkDynamics); + ADlattice.defineDynamics(superGeometry, 4, &instances::getBounceBack()); + + NSlattice.defineDynamics(superGeometry.getMaterialIndicator({1, 2, 3}), &bulkDynamics); + NSlattice.defineDynamics(superGeometry, 4, &instances::getBounceBack()); + + /// sets boundary + TboundaryCondition.addTemperatureBoundary(superGeometry.getMaterialIndicator({2, 3}), Tomega); + NSboundaryCondition.addVelocityBoundary(superGeometry.getMaterialIndicator({2, 3}), omega); + + /// define initial conditions + AnalyticalConst3D rho(1.); + AnalyticalConst3D u0(0.0, 0.0, 0.0); + AnalyticalConst3D T_cold(converter.getLatticeTemperature(Tcold)); + AnalyticalConst3D T_hot(converter.getLatticeTemperature(Thot)); + AnalyticalConst3D T_mean(converter.getLatticeTemperature(Tmean)); + + /// for each material set Rho, U and the Equilibrium + NSlattice.defineRhoU(superGeometry, 1, rho, u0); + NSlattice.iniEquilibrium(superGeometry, 1, rho, u0); + NSlattice.defineRhoU(superGeometry, 2, rho, u0); + NSlattice.iniEquilibrium(superGeometry, 2, rho, u0); + NSlattice.defineRhoU(superGeometry, 3, rho, u0); + NSlattice.iniEquilibrium(superGeometry, 3, rho, u0); + + ADlattice.defineRho(superGeometry, 1, T_mean); + ADlattice.iniEquilibrium(superGeometry, 1, T_mean, u0); + ADlattice.defineRho(superGeometry, 2, T_hot); + ADlattice.iniEquilibrium(superGeometry, 2, T_hot, u0); + ADlattice.defineRho(superGeometry, 3, T_cold); + ADlattice.iniEquilibrium(superGeometry, 3, T_cold, u0); + + /// Make the lattice ready for simulation + NSlattice.initialize(); + ADlattice.initialize(); + + clout << "Prepare Lattice ... OK" << std::endl; +} + +void setBoundaryValues(ThermalUnitConverter &converter, + SuperLattice3D& NSlattice, + SuperLattice3D& ADlattice, + int iT, SuperGeometry3D& superGeometry) +{ + + // nothing to do here + +} + +void getResults(ThermalUnitConverter &converter, + SuperLattice3D& NSlattice, + SuperLattice3D& ADlattice, int iT, + SuperGeometry3D& superGeometry, + Timer& timer, + bool converged) +{ + + OstreamManager clout(std::cout,"getResults"); + + SuperVTMwriter3D vtkWriter("thermalNaturalConvection3D"); + SuperLatticeGeometry3D geometry(NSlattice, superGeometry); + SuperLatticePhysVelocity3D velocity(NSlattice, converter); + SuperLatticePhysPressure3D pressure(NSlattice, converter); + SuperLatticePhysTemperature3D temperature(ADlattice, converter); + vtkWriter.addFunctor( geometry ); + vtkWriter.addFunctor( pressure ); + vtkWriter.addFunctor( velocity ); + vtkWriter.addFunctor( temperature ); + + AnalyticalFfromSuperF3D interpolation(velocity, true); + + const int vtkIter = 2000.; + + if (iT == 0) { + /// Writes the geometry, cuboid no. and rank no. as vti file for visualization + SuperLatticeCuboid3D cuboid(NSlattice); + SuperLatticeRank3D rank(NSlattice); + vtkWriter.write(cuboid); + vtkWriter.write(rank); + + vtkWriter.createMasterFile(); + } + + /// Writes the VTK files + if (iT%vtkIter == 0 || converged) { + + timer.update(iT); + timer.printStep(); + + /// NSLattice statistics console output + NSlattice.getStatistics().print(iT,converter.getPhysTime(iT)); + /// ADLattice statistics console output + ADlattice.getStatistics().print(iT,converter.getPhysTime(iT)); + + vtkWriter.write(iT); + const double a[3] = {0, 0, 1.}; + BlockReduction3D2D planeReduction(temperature, a); + BlockGifWriter gifWriter; + gifWriter.write(planeReduction, Tcold*0.98, Thot*1.02, iT, "temperature"); + + SuperEuklidNorm3D normVel( velocity ); + BlockReduction3D2D planeReduction2(normVel, {0, 0, 1}); + BlockGifWriter gifWriter2; + gifWriter2.write( planeReduction2, iT, "velocity" ); + + } + + if ( converged ) { + + T nusselt = computeNusselt(superGeometry, NSlattice, ADlattice); + + /// Initialize vectors for data output + T xVelocity[3] = { T() }; + T outputVelX[3] = { T() }; + T yVelocity[3] = { T() }; + T outputVelY[3] = { T() }; + const int outputSize = 512; + Vector velX; + Vector posX; + Vector velY; + Vector posY; + + /// loop for the resolution of the cavity at x = lx/2 in yDirection and vice versa + for (int n = 0; n < outputSize; ++n) { + T yPosition[3] = { lx / 2, lx * n / (T) outputSize, lx / N * 2 / 2 }; + T xPosition[3] = { lx * n / (T) outputSize, lx / 2, lx / N * 2 / 2 }; + + /// Interpolate xVelocity at x = lx/2 for each yPosition + interpolation(xVelocity, yPosition); + interpolation(yVelocity, xPosition); + /// Store the interpolated values to compare them among each other in order to detect the maximum + velX[n] = xVelocity[0]; + posY[n] = yPosition[1]; + velY[n] = yVelocity[1]; + posX[n] = xPosition[0]; + + /// Initialize output with the corresponding velocities and positions at the origin + if (n == 0) { + outputVelX[0] = velX[0]; + outputVelX[1] = posY[0]; + outputVelY[0] = velY[0]; + outputVelY[1] = posX[0]; + } + /// look for the maximum velocity in xDirection and the corresponding position in yDirection + if (n > 0 && velX[n] > outputVelX[0]) { + outputVelX[0] = velX[n]; + outputVelX[1] = posY[n]; + } + /// look for the maximum velocity in yDirection and the corresponding position in xDirection + if (n > 0 && velY[n] > outputVelY[0]) { + outputVelY[0] = velY[n]; + outputVelY[1] = posX[n]; + } + } + + // compare to De Vahl Davis' benchmark solutions + clout << "Comparison against De Vahl Davis (1983):" << endl; + if (Ra == 1e3) { + clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity3[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity3[0]) << endl; + clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity3[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity3[1]) << endl; + clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity3[2] - outputVelY[0] / outputVelX[0]) / LitVelocity3[2]) << endl; + clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition3[0] - outputVelX[1] / lx) / LitPosition3[0]) << endl; + clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition3[1] - outputVelY[1] / lx) / LitPosition3[1]) << endl; + clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt3 - nusselt) / nusselt) << endl; + } + else if (Ra == 1e4) { + clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity4[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity4[0]) << endl; + clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity4[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity4[1]) << endl; + clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity4[2] - outputVelY[0] / outputVelX[0]) / LitVelocity4[2]) << endl; + clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition4[0] - outputVelX[1] / lx) / LitPosition4[0]) << endl; + clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition4[1] - outputVelY[1] / lx) / LitPosition4[1]) << endl; + clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt4 - nusselt) / nusselt) << endl; + } + else if (Ra == 1e5) { + clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity5[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity5[0]) << endl; + clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity5[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity5[1]) << endl; + clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity5[2] - outputVelY[0] / outputVelX[0]) / LitVelocity5[2]) << endl; + clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition5[0] - outputVelX[1] / lx) / LitPosition5[0]) << endl; + clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition5[1] - outputVelY[1] / lx) / LitPosition5[1]) << endl; + clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt5 - nusselt) / nusselt) << endl; + } + else if (Ra == 1e6) { + clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity6[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity6[0]) << endl; + clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity6[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity6[1]) << endl; + clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity6[2] - outputVelY[0] / outputVelX[0]) / LitVelocity6[2]) << endl; + clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition6[0] - outputVelX[1] / lx) / LitPosition6[0]) << endl; + clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition6[1] - outputVelY[1] / lx) / LitPosition6[1]) << endl; + clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt6 - nusselt) / nusselt) << endl; + } + } +} + +int main(int argc, char *argv[]) +{ + + /// === 1st Step: Initialization === + OstreamManager clout(std::cout,"main"); + olbInit(&argc, &argv); + singleton::directories().setOutputDir("./tmp/"); + + T tau = 0.9; + + if (argc>=2) { + Ra = atof(argv[1]); + } + + lx = pow(Ra * 15.126e-6 * 15.126e-6 / Pr / 9.81 / (Thot - Tcold) / 0.00341, (T) 1/3); // length of the square + T charU = 1.0 / lx /( Pr * 25.684e-3 / 15.126e-6 / 1.0 * 1.0 / 25.684e-3); + + if (Ra==1e3) { + charU *= LitVelocity3[1]; + N = 64; + } + if (Ra==1e4) { + charU *= LitVelocity4[1]; + N = 128; + } + if (Ra==1e5) { + charU *= LitVelocity5[1]; + N = 256; + } + if (Ra==1e6) { + charU *= LitVelocity6[1]; + N = 512; + } + + ThermalUnitConverter converter( + (T) lx / N, + (T) (tau - 0.5) / descriptors::invCs2() * pow((lx/N),2) / 15.126e-6, + (T) lx, + (T) charU, + (T) 15.126e-6, + (T) 1.0, + (T) 25.684e-3, + (T) Pr * 25.684e-3 / 15.126e-6 / 1.0, + (T) 0.00341, + (T) Tcold, + (T) Thot + ); + converter.print(); + + /// === 2nd Step: Prepare Geometry === + std::vector extend(3,T()); + extend[0] = lx + 2*converter.getPhysLength(1); + extend[1] = lx + converter.getPhysLength(1); + extend[2] = 2.*converter.getPhysLength(1); + std::vector origin(3,T()); + IndicatorCuboid3D cuboid(extend, origin); + + /// Instantiation of an empty cuboidGeometry + CuboidGeometry3D cuboidGeometry(cuboid, converter.getPhysDeltaX(), singleton::mpi().getSize()); + cuboidGeometry.setPeriodicity(false, false, true); // x, y, z + + /// Instantiation of a loadBalancer + HeuristicLoadBalancer loadBalancer(cuboidGeometry); + + /// Instantiation of a superGeometry + SuperGeometry3D superGeometry(cuboidGeometry, loadBalancer, 2); + + prepareGeometry(superGeometry, converter); + + /// === 3rd Step: Prepare Lattice === + + SuperLattice3D ADlattice(superGeometry); + SuperLattice3D NSlattice(superGeometry); + + sOnLatticeBoundaryCondition3D NSboundaryCondition(NSlattice); + createLocalBoundaryCondition3D(NSboundaryCondition); + + sOnLatticeBoundaryCondition3D TboundaryCondition(ADlattice); + createAdvectionDiffusionBoundaryCondition3D(TboundaryCondition); + + ForcedBGKdynamics NSbulkDynamics( + converter.getLatticeRelaxationFrequency(), + instances::getBulkMomenta()); + + AdvectionDiffusionBGKdynamics TbulkDynamics ( + converter.getLatticeThermalRelaxationFrequency(), + instances::getAdvectionDiffusionBulkMomenta()); + + // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!// + // This coupling must be necessarily be put on the Navier-Stokes lattice!! + // !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!// + + std::vector dir{0.0, 1.0, 0.0}; + + T boussinesqForcePrefactor = 9.81 / converter.getConversionFactorVelocity() * converter.getConversionFactorTime() * + converter.getCharPhysTemperatureDifference() * converter.getPhysThermalExpansionCoefficient(); + + NavierStokesAdvectionDiffusionCouplingGenerator3D + coupling(0, converter.getLatticeLength(lx), 0, converter.getLatticeLength(lx), 0, converter.getLatticeLength(lx), + boussinesqForcePrefactor, converter.getLatticeTemperature(Tcold), 1., dir); + + NSlattice.addLatticeCoupling(coupling, ADlattice); + + prepareLattice(converter, + NSlattice, ADlattice, + NSbulkDynamics, TbulkDynamics, + NSboundaryCondition, TboundaryCondition, superGeometry ); + + + /// === 4th Step: Main Loop with Timer === + Timer timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel() ); + timer.start(); + + util::ValueTracer converge(6,epsilon); + for (int iT = 0; iT < converter.getLatticeTime(maxPhysT); ++iT) { + + if (converge.hasConverged()) { + clout << "Simulation converged." << endl; + clout << "Time " << iT << "." << std::endl; + + getResults(converter, NSlattice, ADlattice, iT, superGeometry, timer, converge.hasConverged()); + + break; + } + + /// === 5th Step: Definition of Initial and Boundary Conditions === + setBoundaryValues(converter, NSlattice, ADlattice, iT, superGeometry); + + /// === 6th Step: Collide and Stream Execution === + ADlattice.collideAndStream(); + NSlattice.collideAndStream(); + + NSlattice.executeCoupling(); + + /// === 7th Step: Computation and Output of the Results === + getResults(converter, NSlattice, ADlattice, iT, superGeometry, timer, converge.hasConverged()); + if (iT % 1000 == 0) { + converge.takeValue(computeNusselt(superGeometry, NSlattice, ADlattice),true); + } + } + + timer.stop(); + timer.printSummary(); +} -- cgit v1.2.3