From 94d3e79a8617f88dc0219cfdeedfa3147833719d Mon Sep 17 00:00:00 2001 From: Adrian Kummerlaender Date: Mon, 24 Jun 2019 14:43:36 +0200 Subject: Initialize at openlb-1-3 --- src/functors/analytical/interpolationF3D.hh | 499 ++++++++++++++++++++++++++++ 1 file changed, 499 insertions(+) create mode 100644 src/functors/analytical/interpolationF3D.hh (limited to 'src/functors/analytical/interpolationF3D.hh') diff --git a/src/functors/analytical/interpolationF3D.hh b/src/functors/analytical/interpolationF3D.hh new file mode 100644 index 0000000..5075633 --- /dev/null +++ b/src/functors/analytical/interpolationF3D.hh @@ -0,0 +1,499 @@ +/* This file is part of the OpenLB library + * + * Copyright (C) 2012-2017 Lukas Baron, Tim Dornieden, Mathias J. Krause, + * Albert Mink, Fabian Klemens, Benjamin Förster, Marie-Luise Maier, + * Adrian Kummerlönder + * E-mail contact: info@openlb.net + * The most recent release of OpenLB can be downloaded at + * + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public + * License along with this program; if not, write to the Free + * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, + * Boston, MA 02110-1301, USA. + */ + +#ifndef INTERPOLATION_F_3D_HH +#define INTERPOLATION_F_3D_HH + +#include + +#include "interpolationF3D.h" +#include "dynamics/lbHelpers.h" // for computation of lattice rho and velocity + +namespace olb { + + +/// trilinear interpolation for rectangular lattice with dimensions delta[i]; +/// if the cuboid is a plane (e.g. nZ==1) this functor will convert to bilinear interpolation and to linear interpolation for a "line cuboid" (e.g. nY==nZ==1) +template +SpecialAnalyticalFfromBlockF3D::SpecialAnalyticalFfromBlockF3D( + BlockF3D& f, Cuboid3D& cuboid, + Vector delta, T scale) + : AnalyticalF3D(f.getTargetDim()), _f(f), _cuboid(cuboid), _delta(delta), _scale(scale) +{ + this->getName() = "fromBlockF"; +} + + +template +bool SpecialAnalyticalFfromBlockF3D::operator()(W output[], + const T physC[]) +{ + Vector origin = _cuboid.getOrigin(); + + // scale physC in all 3 dimensions + Vector physCv; + for (int i=0; i<3; i++) { + physCv[i] = origin[i] + (physC[i] - origin[i]) * ( _cuboid.getDeltaR() / _delta[i] ); + } + + int latticeR[3]; + for (int i=0; i<3; i++) { + latticeR[i] = std::max((int)floor( (physCv[i] - origin[i])/ + _cuboid.getDeltaR()), 0); + } + Vector physRiC; + Vector d, e; + W output_tmp[3]; + Vector latticeRv; + + for (int i=0; i<3; i++) { + latticeRv[i] = (T) latticeR[i]; + } + physRiC = origin + latticeRv * _cuboid.getDeltaR(); + T dr = 1. / _cuboid.getDeltaR(); + + // compute weights + d = (physCv - physRiC) * dr; + e = 1. - d; + + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] = W(); + output_tmp[iD] = W(); + } + + //0=1=2= + _f(output_tmp, latticeR); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * e[0]*e[1]*e[2]; + } + + if (_cuboid.getNy() != 1) { + latticeR[1]++; + } + + //0=1+2= + _f(output_tmp, latticeR); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * e[0]*d[1]*e[2]; + } + + if (_cuboid.getNx() != 1) { + latticeR[0]++; + } + if (_cuboid.getNy() != 1) { + latticeR[1]--; + } + //0+1=2= + _f(output_tmp, latticeR); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * d[0]*e[1]*e[2]; + } + + if (_cuboid.getNy() != 1) { + latticeR[1]++; + } + //0+1+2= + _f(output_tmp, latticeR); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * d[0]*d[1]*e[2]; + } + + if (_cuboid.getNx() != 1) { + latticeR[0]--; + } + if (_cuboid.getNy() != 1) { + latticeR[1]--; + } + if (_cuboid.getNz() != 1) { + latticeR[2]++; + } + //0=1=2+ + _f(output_tmp, latticeR); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * e[0]*e[1]*d[2]; + } + + if (_cuboid.getNy() != 1) { + latticeR[1]++; + } + //0=1+2+ + _f(output_tmp, latticeR); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * e[0]*d[1]*d[2]; + } + + if (_cuboid.getNx() != 1) { + latticeR[0]++; + } + if (_cuboid.getNy() != 1) { + latticeR[1]--; + } + //0+1=2+ + _f(output_tmp, latticeR); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * d[0]*e[1]*d[2]; + } + + if (_cuboid.getNy() != 1) { + latticeR[1]++; + } + //0+1+2+ + _f(output_tmp, latticeR); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * d[0]*d[1]*d[2]; + } + + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] *= _scale; + } + + return true; +} + + +template +AnalyticalFfromBlockF3D::AnalyticalFfromBlockF3D( + BlockF3D& f, Cuboid3D& cuboid, const int overlap) + : AnalyticalF3D(f.getTargetDim()), + _f(f), _cuboid(cuboid), _overlap(overlap) +{ + this->getName() = "fromBlockF"; +} + +/// trilinear interpolation on cubic lattice +template +bool AnalyticalFfromBlockF3D::operator()(W output[], const T physC[]) +{ + int latticeC[3]; + int latticeR[3]; + _cuboid.getFloorLatticeR(latticeR, physC); + + if ( latticeR[0] >= -_overlap && latticeR[0] + 1 < _cuboid.getNx() + _overlap && + latticeR[1] >= -_overlap && latticeR[1] + 1 < _cuboid.getNy() + _overlap && + latticeR[2] >= -_overlap && latticeR[2] + 1 < _cuboid.getNz() + _overlap ) { + const int& locX = latticeR[0]; + const int& locY = latticeR[1]; + const int& locZ = latticeR[2]; + + Vector physRiC; + Vector physCv(physC); + _cuboid.getPhysR(physRiC.data, locX, locY, locZ); + + // compute weights + Vector d = (physCv - physRiC) * (1. / _cuboid.getDeltaR()); + Vector e = 1. - d; + + W output_tmp[_f.getTargetDim()]; + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output_tmp[iD] = W(); + } + + latticeC[0] = locX; + latticeC[1] = locY; + latticeC[2] = locZ; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * e[0] * e[1] * e[2]; + output_tmp[iD] = W(); + } + + latticeC[0] = locX; + latticeC[1] = locY + 1; + latticeC[2] = locZ; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * e[0] * d[1] * e[2]; + output_tmp[iD] = W(); + } + + latticeC[0] = locX + 1; + latticeC[1] = locY; + latticeC[2] = locZ; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * d[0] * e[1] * e[2]; + output_tmp[iD] = W(); + } + + latticeC[0] = locX + 1; + latticeC[1] = locY + 1; + latticeC[2] = locZ; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * d[0] * d[1] * e[2]; + output_tmp[iD] = W(); + } + + latticeC[0] = locX; + latticeC[1] = locY; + latticeC[2] = locZ + 1; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * e[0] * e[1] * d[2]; + output_tmp[iD] = W(); + } + + latticeC[0] = locX; + latticeC[1] = locY + 1; + latticeC[2] = locZ + 1; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * e[0] * d[1] * d[2]; + output_tmp[iD] = W(); + } + + latticeC[0] = locX + 1; + latticeC[1] = locY; + latticeC[2] = locZ + 1; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * d[0] * e[1] * d[2]; + output_tmp[iD] = W(); + } + + latticeC[0] = locX + 1; + latticeC[1] = locY + 1; + latticeC[2] = locZ + 1; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * d[0] * d[1] * d[2]; + output_tmp[iD] = W(); + } + + return true; + } else { + return false; + } +} + + +template +AnalyticalFfromSuperF3D::AnalyticalFfromSuperF3D(SuperF3D& f, + bool communicateToAll, int overlap, bool communicateOverlap) + : AnalyticalF3D(f.getTargetDim()), + _communicateToAll(communicateToAll), + _communicateOverlap(communicateOverlap), + _f(f), + _cuboidGeometry(f.getSuperStructure().getCuboidGeometry()), + _overlap(overlap) +{ + this->getName() = "fromSuperF"; + + if (overlap == -1) { + _overlap = _f.getSuperStructure().getOverlap(); + } + + LoadBalancer& load = _f.getSuperStructure().getLoadBalancer(); + + if ( _f.getBlockFSize() == load.size() ) { + for (int iC = 0; iC < load.size(); ++iC) { + this->_blockF.emplace_back( + new AnalyticalFfromBlockF3D(_f.getBlockF(iC), + _cuboidGeometry.get(load.glob(iC)), + _overlap) + ); + } + } +} + +template +bool AnalyticalFfromSuperF3D::operator()(W output[], const T physC[]) +{ + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] = W(); + } + + int latticeR[4]; + if (!_cuboidGeometry.getLatticeR(latticeR, physC)) { + return false; + } + + if (_communicateOverlap) { + _f.getSuperStructure().communicate(); + } + + int dataSize = 0; + int dataFound = 0; + + int latticeC[4] = {}; + + LoadBalancer& load = _f.getSuperStructure().getLoadBalancer(); + + for (int iC = 0; iC < load.size(); ++iC) { + latticeC[0] = load.glob(iC); + Cuboid3D& cuboid = _cuboidGeometry.get(latticeC[0]); + cuboid.getFloorLatticeR(latticeR, physC); + + // latticeR within cuboid extended by overlap + if ( latticeR[0] >= -_overlap && latticeR[0] + 1 < cuboid.getNx() + _overlap && + latticeR[1] >= -_overlap && latticeR[1] + 1 < cuboid.getNy() + _overlap && + latticeR[2] >= -_overlap && latticeR[2] + 1 < cuboid.getNz() + _overlap ) { + if (_blockF.empty()) { + const int& locX = latticeR[0]; + const int& locY = latticeR[1]; + const int& locZ = latticeR[2]; + + Vector physRiC; + Vector physCv(physC); + cuboid.getPhysR(physRiC.data, locX, locY, locZ); + + // compute weights + Vector d = (physCv - physRiC) * (1. / cuboid.getDeltaR()); + Vector e = 1. - d; + + W output_tmp[_f.getTargetDim()]; + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output_tmp[iD] = W(); + } + + latticeC[1] = locX; + latticeC[2] = locY; + latticeC[3] = locZ; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * e[0] * e[1] * e[2]; + output_tmp[iD] = W(); + } + + latticeC[1] = locX; + latticeC[2] = locY + 1; + latticeC[3] = locZ; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * e[0] * d[1] * e[2]; + output_tmp[iD] = W(); + } + + latticeC[1] = locX + 1; + latticeC[2] = locY; + latticeC[3] = locZ; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * d[0] * e[1] * e[2]; + output_tmp[iD] = W(); + } + + latticeC[1] = locX + 1; + latticeC[2] = locY + 1; + latticeC[3] = locZ; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * d[0] * d[1] * e[2]; + output_tmp[iD] = W(); + } + + latticeC[1] = locX; + latticeC[2] = locY; + latticeC[3] = locZ + 1; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * e[0] * e[1] * d[2]; + output_tmp[iD] = W(); + } + + latticeC[1] = locX; + latticeC[2] = locY + 1; + latticeC[3] = locZ + 1; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * e[0] * d[1] * d[2]; + output_tmp[iD] = W(); + } + + latticeC[1] = locX + 1; + latticeC[2] = locY; + latticeC[3] = locZ + 1; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * d[0] * e[1] * d[2]; + output_tmp[iD] = W(); + } + + latticeC[1] = locX + 1; + latticeC[2] = locY + 1; + latticeC[3] = locZ + 1; + _f(output_tmp,latticeC); + for (int iD = 0; iD < _f.getTargetDim(); ++iD) { + output[iD] += output_tmp[iD] * d[0] * d[1] * d[2]; + output_tmp[iD] = W(); + } + } else { + _blockF[iC]->operator()(output, physC); + } + + dataSize += _f.getTargetDim(); + ++dataFound; + } + } + + if (_communicateToAll) { +#ifdef PARALLEL_MODE_MPI + singleton::mpi().reduceAndBcast(dataFound, MPI_SUM); + singleton::mpi().reduceAndBcast(dataSize, MPI_SUM); +#endif + dataSize /= dataFound; +#ifdef PARALLEL_MODE_MPI + for (int iD = 0; iD < dataSize; ++iD) { + singleton::mpi().reduceAndBcast(output[iD], MPI_SUM); + } +#endif + for (int iD = 0; iD < dataSize; ++iD) { + output[iD]/=dataFound; + } + } else { + if (dataFound!=0) { + dataSize /= dataFound; + for (int iD = 0; iD < dataSize; ++iD) { + output[iD]/=dataFound; + } + } + } + + if (dataFound>0) { + return true; + } + return false; +} + +template +int AnalyticalFfromSuperF3D::getBlockFSize() const +{ + OLB_ASSERT(_blockF.size() < INT32_MAX, + "it is safe to cast std::size_t to int"); + return _blockF.size(); +} + +template +AnalyticalFfromBlockF3D& AnalyticalFfromSuperF3D::getBlockF(int iCloc) +{ + OLB_ASSERT(iCloc < int(_blockF.size()) && iCloc >= 0, + "block functor index within bounds"); + return *(_blockF[iCloc]); +} + + +} // end namespace olb + +#endif -- cgit v1.2.3