From 94d3e79a8617f88dc0219cfdeedfa3147833719d Mon Sep 17 00:00:00 2001
From: Adrian Kummerlaender
Date: Mon, 24 Jun 2019 14:43:36 +0200
Subject: Initialize at openlb-1-3
---
.../timeAveraged/superLatticeTimeAveraged3D.hh | 209 +++++++++++++++++++++
1 file changed, 209 insertions(+)
create mode 100644 src/functors/lattice/timeAveraged/superLatticeTimeAveraged3D.hh
(limited to 'src/functors/lattice/timeAveraged/superLatticeTimeAveraged3D.hh')
diff --git a/src/functors/lattice/timeAveraged/superLatticeTimeAveraged3D.hh b/src/functors/lattice/timeAveraged/superLatticeTimeAveraged3D.hh
new file mode 100644
index 0000000..ab39ab1
--- /dev/null
+++ b/src/functors/lattice/timeAveraged/superLatticeTimeAveraged3D.hh
@@ -0,0 +1,209 @@
+/* This file is part of the OpenLB library
+ *
+ * Copyright (C) 2018 Mathias J. Krause, Benedict Hasenauer
+ * E-mail contact: info@openlb.net
+ * The most recent release of OpenLB can be downloaded at
+ *
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the Free
+ * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ * Boston, MA 02110-1301, USA.
+*/
+
+#ifndef SUPER_LATTICE_TIME_AVERAGED_F3_D_HH
+#define SUPER_LATTICE_TIME_AVERAGED_F3_D_HH
+
+#include // for generic i/o
+#include // for lpnorm
+#include
+#include "superLatticeTimeAveraged3D.h"
+
+
+namespace olb {
+
+template
+SuperLatticeTimeAveragedF3D:: SuperLatticeTimeAveragedF3D( SuperF3D& sFunctor)
+ : SuperF3D(sFunctor.getSuperStructure(),sFunctor.getTargetDim()*2), _ensembles(0), _sFunctor(sFunctor), _sData(_sFunctor.getSuperStructure().getCuboidGeometry(),_sFunctor.getSuperStructure().getLoadBalancer(),_sFunctor.getSuperStructure().getOverlap(),_sFunctor.getTargetDim()), _sDataP2(_sData)
+{
+ this->getName() = "Time Averaged " + _sFunctor.getName();
+};
+
+template
+bool SuperLatticeTimeAveragedF3D::operator() (T output[], const int input[])
+{
+ T iCloc = _sData.getLoadBalancer().loc(input[0]);
+ for ( int iDim = 0; iDim < _sData.getDataSize(); iDim++) {
+ output[iDim] = _sData.get(iCloc,input[1],input[2],input[3],iDim) / _ensembles;
+ }
+ for (int iDim = _sData.getDataSize(); iDim < _sData.getDataSize()*2; iDim++)
+ if (_sDataP2.get(iCloc,input[1],input[2],input[3],(int) iDim-_sDataP2.getDataSize())/_ensembles - _sData.get(iCloc,input[1],input[2],input[3],(int) iDim-_sDataP2.getDataSize())*_sData.get(iCloc,input[1],input[2],input[3],(int) iDim-_sDataP2.getDataSize())/_ensembles/_ensembles<0) {
+ output[iDim]=0;
+ }
+ else {
+ output[iDim] = sqrt(_sDataP2.get(iCloc,input[1],input[2],input[3],(int) iDim-_sDataP2.getDataSize())/_ensembles - _sData.get(iCloc,input[1],input[2],input[3],(int) iDim-_sDataP2.getDataSize())*_sData.get(iCloc,input[1],input[2],input[3],(int) iDim-_sDataP2.getDataSize())/_ensembles/_ensembles);
+ }
+ return true;
+};
+
+template
+int SuperLatticeTimeAveragedF3D::getEnsembles()
+{
+ return _ensembles;
+};
+
+template
+void SuperLatticeTimeAveragedF3D::addEnsemble()
+{
+ int i[4];
+ int iX,iY,iZ;
+ for (int iCloc=0; iCloc < _sData.getLoadBalancer().size(); ++iCloc) {
+ i[0] = _sData.getLoadBalancer().glob(iCloc);
+ for (iX=0; iX < _sData.get(iCloc).getNx(); iX++) {
+ for (iY=0; iY < _sData.get(iCloc).getNy(); iY++) {
+ for (iZ=0; iZ < _sData.get(iCloc).getNz(); iZ++) {
+ i[1] = iX - _sData.getOverlap();
+ i[2] = iY - _sData.getOverlap();
+ i[3] = iZ - _sData.getOverlap();
+ BaseType tmp[_sFunctor.getTargetDim()];
+ _sFunctor(tmp, i);
+ for (int iDim=0; iDim<_sFunctor.getTargetDim(); iDim++) {
+ _sData.get(iCloc).get(iX, iY, iZ, iDim) += (BaseType)(tmp[iDim]) ;
+ _sDataP2.get(iCloc).get(iX, iY, iZ, iDim) += (BaseType)(tmp[iDim]) *(BaseType)(tmp[iDim]) ;
+ }
+ }
+ }
+ }
+ }
+ _ensembles++;
+};
+
+template
+int SuperLatticeTimeAveragedF3D::getBlockFSize() const
+{
+ return 0;
+};
+
+template
+SuperLatticeTimeAveragedCrossCorrelationF3D::SuperLatticeTimeAveragedCrossCorrelationF3D(SuperF3D& sFunctorM,SuperF3D& sFunctorN)
+ : SuperF3D(sFunctorM.getSuperStructure(),sFunctorM.getTargetDim()*sFunctorN.getTargetDim()),_sFunctorM(sFunctorM),_sFunctorN(sFunctorN), _ensembles(0), _sDataM(_sFunctorM.getSuperStructure().getCuboidGeometry(),_sFunctorM.getSuperStructure().getLoadBalancer(),_sFunctorM.getSuperStructure().getOverlap(),_sFunctorM.getTargetDim()),_sDataN(_sFunctorN.getSuperStructure().getCuboidGeometry(),_sFunctorN.getSuperStructure().getLoadBalancer(),_sFunctorN.getSuperStructure().getOverlap(),_sFunctorN.getTargetDim()),_sDataMN(_sFunctorM.getSuperStructure().getCuboidGeometry(),_sFunctorM.getSuperStructure().getLoadBalancer(),_sFunctorM.getSuperStructure().getOverlap(),_sFunctorM.getTargetDim()*_sFunctorN.getTargetDim())
+{
+ this->getName() = "Time Averaged Corss Correlation " + _sFunctorM.getName()+"-"+_sFunctorN.getName();
+};
+
+template
+void SuperLatticeTimeAveragedCrossCorrelationF3D::addEnsemble()
+{
+ int i[4];
+ int iX,iY,iZ;
+ int iDimMN;
+
+
+ for (int iCloc=0; iCloc < _sDataMN.getLoadBalancer().size(); ++iCloc) {
+ i[0] = _sDataMN.getLoadBalancer().glob(iCloc);
+ for (iX=0; iX < _sDataMN.get(iCloc).getNx(); iX++) {
+ for (iY=0; iY < _sDataMN.get(iCloc).getNy(); iY++) {
+ for (iZ=0; iZ < _sDataMN.get(iCloc).getNz(); iZ++) {
+ i[1] = iX - _sDataMN.getOverlap();
+ i[2] = iY - _sDataMN.getOverlap();
+ i[3] = iZ - _sDataMN.getOverlap();
+ BaseType tmpN[_sFunctorN.getTargetDim()];
+ BaseType tmpM[_sFunctorM.getTargetDim()];
+ _sFunctorN(tmpN, i);
+ _sFunctorM(tmpM, i);
+ iDimMN=0;
+ for (int iDimM=0; iDimM<_sFunctorM.getTargetDim(); iDimM++) {
+ for (int iDimN=0; iDimN<_sFunctorN.getTargetDim(); iDimN++) {
+ _sDataMN.get(iCloc).get(iX, iY, iZ, iDimMN) += (BaseType)(tmpM[iDimM])*(BaseType)(tmpN[iDimN]) ;
+ iDimMN++;
+ }
+ }
+ for (int iDim=0; iDim<_sFunctorN.getTargetDim(); iDim++) {
+ _sDataN.get(iCloc).get(iX, iY, iZ, iDim) += (BaseType)(tmpN[iDim]) ;
+ }
+ for (int iDim=0; iDim<_sFunctorM.getTargetDim(); iDim++) {
+ _sDataM.get(iCloc).get(iX, iY, iZ, iDim) += (BaseType)(tmpM[iDim]) ;
+ }
+ }
+ }
+ }
+ }
+
+ _ensembles++;
+};
+
+template
+bool SuperLatticeTimeAveragedCrossCorrelationF3D::operator() (T output[], const int input[])
+{
+ int iDim =0;
+ T iCloc = _sDataMN.getLoadBalancer().loc(input[0]);
+ for (int iDimM=0; iDimM<_sFunctorM.getTargetDim(); iDimM++) {
+ for (int iDimN=0; iDimN<_sFunctorN.getTargetDim(); iDimN++) {
+ output[iDim] = _sDataMN.get(iCloc,input[1],input[2],input[3],iDim)-_sDataM.get(iCloc,input[1],input[2],input[3],iDimM) *_sDataN.get(iCloc,input[1],input[2],input[3],iDimN)/_ensembles;
+ iDim++;
+ }
+ }
+
+ return true;
+};
+
+template
+SuperLatticeTimeAveraged3DL2Norm::SuperLatticeTimeAveraged3DL2Norm(SuperF3D& sFunctorM,SuperF3D& sFunctorN,SuperGeometry3D& sGeometry,int material)
+ : SuperF3D(sFunctorM.getSuperStructure(),sFunctorM.getTargetDim()), _sFunctorM(sFunctorM), _sFunctorN(sFunctorN), _sGeometry(sGeometry),_material(material)
+{
+ this->getName() = "SuperLatticeTimeAveraged3DL2Norm";
+};
+
+template
+bool SuperLatticeTimeAveraged3DL2Norm::operator() (T output[], const int input[])
+{
+ output[0]=0;
+ CuboidGeometry3D& geometry = _sFunctorM.getSuperStructure().getCuboidGeometry();
+
+ int inputTmp[3];
+ T tmpM[_sFunctorM.getTargetDim()];
+ T tmpN[_sFunctorN.getTargetDim()];
+ for (int iC = 0; iC < _sFunctorM.getSuperStructure().getLoadBalancer().size(); ++iC) {
+ Cuboid3D& cuboid = geometry.get(_sFunctorM.getSuperStructure().getLoadBalancer().glob(iC));
+
+ const int nX = cuboid.getNx();
+ const int nY = cuboid.getNy();
+
+ inputTmp[0] = _sFunctorM.getSuperStructure().getLoadBalancer().glob(iC);
+
+ for (inputTmp[1] = 0; inputTmp[1] < nX; ++inputTmp[1]) {
+ for (inputTmp[2] = 0; inputTmp[2] < nY; ++inputTmp[2]) {
+ _sFunctorM(tmpM, inputTmp);
+ _sFunctorN(tmpN, inputTmp);
+ for (int iDim = 0; iDim < _sFunctorM.getTargetDim()/2; ++iDim) {
+ output[0] += (tmpM[iDim]-tmpN[iDim])*(tmpM[iDim]-tmpN[iDim]);
+ }
+
+ }
+ }
+ }
+
+#ifdef PARALLEL_MODE_MPI
+ singleton::mpi().reduceAndBcast(output[0],MPI_SUM);
+#endif
+
+ Cuboid3D& cuboid = geometry.get(_sFunctorM.getSuperStructure().getLoadBalancer().glob(0));
+ const T weight = cuboid.getDeltaR();
+
+ output[0]=sqrt(output[0])*weight;
+ return true;
+
+};
+}
+
+#endif
--
cgit v1.2.3