From 94d3e79a8617f88dc0219cfdeedfa3147833719d Mon Sep 17 00:00:00 2001 From: Adrian Kummerlaender Date: Mon, 24 Jun 2019 14:43:36 +0200 Subject: Initialize at openlb-1-3 --- .../twoWayCouplings/backCouplingModels.hh | 230 +++++++++++++++++++++ 1 file changed, 230 insertions(+) create mode 100644 src/particles/twoWayCouplings/backCouplingModels.hh (limited to 'src/particles/twoWayCouplings/backCouplingModels.hh') diff --git a/src/particles/twoWayCouplings/backCouplingModels.hh b/src/particles/twoWayCouplings/backCouplingModels.hh new file mode 100644 index 0000000..e88c62a --- /dev/null +++ b/src/particles/twoWayCouplings/backCouplingModels.hh @@ -0,0 +1,230 @@ +/* Lattice Boltzmann sample, written in C++, using the OpenLB + * library + * + * Copyright (C) 2019 Davide Dapelo + * E-mail contact: info@openlb.net + * The most recent release of OpenLB can be downloaded at + * + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public + * License along with this program; if not, write to the Free + * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, + * Boston, MA 02110-1301, USA. + */ + +/* Models for Lagrangian back-coupling methods -- generic implementation. + */ + +#ifndef LB_BACK_COUPLING_MODELS_HH +#define LB_BACK_COUPLING_MODELS_HH + +namespace olb { + + +////////////////////// Class BaseBackCouplingModel //////////////////////// + +template class Particle> +BaseBackCouplingModel::BaseBackCouplingModel ( + UnitConverter& converter, + SuperLattice3D& sLattice, + SuperGeometry3D& sGeometry ) + : _converter(converter), + _sGeometry(sGeometry), + _sLattice(sLattice) +{ + _zeroAnalytical = std::make_shared > (T()); + _zeroField = std::make_shared > (*_zeroAnalytical, *_zeroAnalytical, *_zeroAnalytical); +} + +template class Particle> +void BaseBackCouplingModel::resetExternalField(int material) +{ + // resets external field + this->_sLattice.template defineField(this->_sGeometry, material, *_zeroField); + + // NECESSARY to communicate values before using them in operator() + this->_sLattice.communicate(); +} + + +////////////////////// Class CubicDeltaBackCouplingModel //////////////////////// + +template class Particle> +CubicDeltaBackCouplingModel::CubicDeltaBackCouplingModel ( + UnitConverter& converter, + SuperLattice3D& sLattice, + SuperGeometry3D& sGeometry ) + : BaseBackCouplingModel(converter, sLattice, sGeometry) +{ + _cubicDeltaFunctional = std::make_shared > ( + this->_sLattice, this->_converter, this->_sGeometry ); +} + +template class Particle> +bool CubicDeltaBackCouplingModel::operator() (Particle* p, int globic, int material, int subCycles) +{ + int locIC = this->_sLattice.getLoadBalancer().loc(globic); + + // reading the force from the value stored inside the particle + std::vector physForceP = p->getStoreForce(); // physical force acting on the particle + + T latticeForceP[3] = {T(), T(), T()}; // dimensionless force acting on the particle + latticeForceP[0] = physForceP[0] / this->_converter.getConversionFactorForce(); + latticeForceP[1] = physForceP[1] / this->_converter.getConversionFactorForce(); + latticeForceP[2] = physForceP[2] / this->_converter.getConversionFactorForce(); + + T physPosP[3] = {T(), T(), T()}; // particle's physical position + physPosP[0] = (p->getPos()[0]); + physPosP[1] = (p->getPos()[1]); + physPosP[2] = (p->getPos()[2]); + + // particle's dimensionless position, rounded at neighbouring voxel + int latticeRoundedPosP[3] = {0, 0, 0}; + this->_sLattice.getCuboidGeometry().get(globic).getLatticeR ( + latticeRoundedPosP, physPosP ); + + // smooth Dirac delta + this->_cubicDeltaFunctional->operator() (_delta, physPosP, globic); + + T tempDelta = T(); + T F[3] = {T(), T(), T()}; // dimensionless smoothed force + + for (int i = -_range; i <= _range; ++i) { + for (int j = -_range; j <= _range; ++j) { + for (int k = -_range; k <= _range; ++k) { + if (this->_sGeometry.getBlockGeometry(locIC).getMaterial( + latticeRoundedPosP[0] + i, latticeRoundedPosP[1] + j, + latticeRoundedPosP[2] + k) == material) { + + tempDelta = _delta[i + _range][j + _range][k + _range]; + + F[0] = -latticeForceP[0] * tempDelta / (T)(subCycles); + F[1] = -latticeForceP[1] * tempDelta / (T)(subCycles); + F[2] = -latticeForceP[2] * tempDelta / (T)(subCycles); + + this->_sLattice.getBlockLattice(locIC).get ( + latticeRoundedPosP[0] + i, + latticeRoundedPosP[1] + j, + latticeRoundedPosP[2] + k ).template addField( F ); + } + } + } + } + return true; +} + + +////////////////////// Class LocalDeltaBackCouplingModel //////////////////////// + +template class Particle> +LocalBackCouplingModel::LocalBackCouplingModel ( + UnitConverter& converter, + SuperLattice3D& sLattice, + SuperGeometry3D& sGeometry ) + : BaseBackCouplingModel(converter, sLattice, sGeometry) +{} + +template class Particle> +bool LocalBackCouplingModel::operator() (Particle* p, int globic, int material, int subCycles) +{ + int locIC = this->_sLattice.getLoadBalancer().loc(globic); + + // reading the force from the value stored inside the particle + std::vector physForceP = p->getStoreForce(); // physical force acting on the particle + + T latticeForceP[3] = {T(), T(), T()}; // dimensionless force acting on the particle + latticeForceP[0] = physForceP[0] / this->_converter.getConversionFactorForce(); + latticeForceP[1] = physForceP[1] / this->_converter.getConversionFactorForce(); + latticeForceP[2] = physForceP[2] / this->_converter.getConversionFactorForce(); + + T physPosP[3] = {T(), T(), T()}; // particle's physical position + physPosP[0] = (p->getPos()[0]); + physPosP[1] = (p->getPos()[1]); + physPosP[2] = (p->getPos()[2]); + + // particle's dimensionless position, rounded at neighbouring voxel + int latticeRoundedPosP[3] = {0, 0, 0}; + this->_sLattice.getCuboidGeometry().get(globic).getLatticeR ( + latticeRoundedPosP, physPosP ); + + if (this->_sGeometry.getBlockGeometry(locIC).getMaterial( + latticeRoundedPosP[0], latticeRoundedPosP[1], + latticeRoundedPosP[2]) == material) { + + T F[3] = {T(), T(), T()}; // dimensionless smoothed force + F[0] = -latticeForceP[0] / (T)(subCycles); + F[1] = -latticeForceP[1] / (T)(subCycles); + F[2] = -latticeForceP[2] / (T)(subCycles); + + this->_sLattice.getBlockLattice(locIC).get ( + latticeRoundedPosP[0], + latticeRoundedPosP[1], + latticeRoundedPosP[2] ).template addField( F ); + } + + return true; +} + + +////////////////////// Class NonLocalBaseBackCouplingModel //////////////////////// + +template class Particle> +NonLocalBaseBackCouplingModel::NonLocalBaseBackCouplingModel ( + UnitConverter& converter, + SuperLattice3D& sLattice, + SuperGeometry3D& sGeometry, + SmoothingFunctional& smoothingFunctional ) + : BaseBackCouplingModel(converter, sLattice, sGeometry), + _smoothingFunctional(smoothingFunctional) +{} + +template class Particle> +bool NonLocalBaseBackCouplingModel::operator() (Particle* p, int globic, int material, int subCycles) +{ + int locIC = this->_sLattice.getLoadBalancer().loc(globic); + + // reading the force from the value stored inside the particle + std::vector physForceP = p->getStoreForce(); // physical force acting on the particle + T latticeForceP[3] = {T(), T(), T()}; // dimensionless force acting on the particle + latticeForceP[0] = physForceP[0] / this->_converter.getConversionFactorForce(); + latticeForceP[1] = physForceP[1] / this->_converter.getConversionFactorForce(); + latticeForceP[2] = physForceP[2] / this->_converter.getConversionFactorForce(); + + // Updating force through voxels within kernel smoothing length from the bubble's position + for (int i=0; i_smoothingFunctional.getSize(); i++) { + + // Position of the iterated voxel + int iLatticePosF[3] = {0, 0, 0}; + this->_smoothingFunctional.getLatticePos(iLatticePosF, i); + + // Updating iterated voxel + if (this->_sGeometry.getBlockGeometry(locIC).getMaterial( + iLatticePosF[0], iLatticePosF[1], + iLatticePosF[2]) == material) { + + // Weighted force acting on the iterated voxel + T F[3] = {T(), T(), T()}; // dimensionless smoothed force + F[0] = -latticeForceP[0] * this->_smoothingFunctional.getWeight(i) / (T)(subCycles); + F[1] = -latticeForceP[1] * this->_smoothingFunctional.getWeight(i) / (T)(subCycles); + F[2] = -latticeForceP[2] * this->_smoothingFunctional.getWeight(i) / (T)(subCycles); + + this->_sLattice.getBlockLattice(locIC).get ( + iLatticePosF[0], iLatticePosF[1], iLatticePosF[2] ).template addField( F ); + } + } + return true; +} + +} + +#endif -- cgit v1.2.3