From 78d8d5206b0986e81690d2cee6b7202abef5a1f2 Mon Sep 17 00:00:00 2001 From: Adrian Kummerlaender Date: Tue, 8 Jan 2019 10:43:28 +0100 Subject: Extract refinement scaffolding into separate units --- src/refinement/coupler2D.hh | 348 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 348 insertions(+) create mode 100644 src/refinement/coupler2D.hh (limited to 'src/refinement/coupler2D.hh') diff --git a/src/refinement/coupler2D.hh b/src/refinement/coupler2D.hh new file mode 100644 index 0000000..49efe57 --- /dev/null +++ b/src/refinement/coupler2D.hh @@ -0,0 +1,348 @@ +/* This file is part of the OpenLB library + * + * Copyright (C) 2019 Adrian Kummerländer + * E-mail contact: info@openlb.net + * The most recent release of OpenLB can be downloaded at + * + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public + * License along with this program; if not, write to the Free + * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, + * Boston, MA 02110-1301, USA. +*/ + +#ifndef REFINEMENT_COUPLER_2D_HH +#define REFINEMENT_COUPLER_2D_HH + +#include "coupler2D.h" + +#include "dynamics/lbHelpers.h" + +namespace olb { + + +template class DESCRIPTOR> +void computeFeq(const Cell& cell, T fEq[DESCRIPTOR::q]) +{ + T rho{}; + T u[2] {}; + cell.computeRhoU(rho, u); + const T uSqr = u[0]*u[0] + u[1]*u[1]; + for (int iPop=0; iPop < DESCRIPTOR::q; ++iPop) { + fEq[iPop] = lbHelpers::equilibrium(iPop, rho, u, uSqr); + } +} + +template class DESCRIPTOR> +void computeFneq(const Cell& cell, T fNeq[DESCRIPTOR::q]) +{ + T rho{}; + T u[2] {}; + cell.computeRhoU(rho, u); + lbHelpers::computeFneq(cell, fNeq, rho, u); +} + +template +T order4interpolation(T fm3, T fm1, T f1, T f3) +{ + return 9./16. * (fm1 + f1) - 1./16. * (fm3 + f3); +} + +template +T order3interpolation(T fm1, T f1, T f3) +{ + return 3./8. * fm1 + 3./4. * f1 - 1./8. * f3; +} + +template +T order2interpolation(T f0, T f1) +{ + return 0.5 * (f0 + f1); +} + +template class DESCRIPTOR> +void computeRestrictedFneq(const SuperLattice2D& lattice, Vector pos, T restrictedFneq[DESCRIPTOR::q]) +{ + for (int iPop=0; iPop < DESCRIPTOR::q; ++iPop) { + T fNeq[DESCRIPTOR::q] {}; + computeFneq(lattice.get(pos[0], pos[1] + DESCRIPTOR::c[iPop][0], pos[2] + DESCRIPTOR::c[iPop][1]), fNeq); + + for (int jPop=0; jPop < DESCRIPTOR::q; ++jPop) { + restrictedFneq[jPop] += fNeq[jPop]; + } + } + + for (int iPop=0; iPop < DESCRIPTOR::q; ++iPop) { + restrictedFneq[iPop] /= DESCRIPTOR::q; + } +} + + +template class DESCRIPTOR> +Vector Coupler2D::getFineLatticeR(int y) const +{ + if (_vertical) { + return _fineOrigin + Vector {0, 0, y}; + } + else { + return _fineOrigin + Vector {0, y, 0}; + } +} + +template class DESCRIPTOR> +Vector Coupler2D::getCoarseLatticeR(int y) const +{ + if (_vertical) { + return _coarseOrigin + Vector {0, 0, y}; + } + else { + return _coarseOrigin + Vector {0, y, 0}; + } +} + +template class DESCRIPTOR> +Coupler2D::Coupler2D(Grid2D& coarse, Grid2D& fine, + Vector origin, Vector extend): + _coarse(coarse), + _fine(fine), + _coarseSize(floor(extend.norm() / coarse.getConverter().getPhysDeltaX() + 0.5)+1), + _fineSize(2*_coarseSize-1), + _vertical(util::nearZero(extend[0])) +{ + OLB_ASSERT(util::nearZero(extend[0]) || util::nearZero(extend[1]), "Coupling is only implemented alongside unit vectors"); + + const auto& coarseGeometry = _coarse.getCuboidGeometry(); + const auto& fineGeometry = _fine.getCuboidGeometry(); + + Vector tmpLatticeOrigin{}; + coarseGeometry.getLatticeR(origin, tmpLatticeOrigin); + _physOrigin = coarseGeometry.getPhysR(tmpLatticeOrigin.toStdVector()); + + coarseGeometry.getLatticeR(_physOrigin, _coarseOrigin); + fineGeometry.getLatticeR(_physOrigin, _fineOrigin); +} + + +template class DESCRIPTOR> +FineCoupler2D::FineCoupler2D(Grid2D& coarse, Grid2D& fine, + Vector origin, Vector extend): + Coupler2D(coarse, fine, origin, extend), + _c2f_rho(this->_coarseSize), + _c2f_u(this->_coarseSize, Vector(T{})), + _c2f_fneq(this->_coarseSize, Vector::q>(T{})) +{ + OstreamManager clout(std::cout,"C2F"); + clout << "coarse origin: " << this->_coarseOrigin[0] << " " << this->_coarseOrigin[1] << " " << this->_coarseOrigin[2] << std::endl; + clout << "fine origin: " << this->_fineOrigin[0] << " " << this->_fineOrigin[1] << " " << this->_fineOrigin[2] << std::endl; + clout << "fine size: " << this->_fineSize << std::endl; +} + +template class DESCRIPTOR> +void FineCoupler2D::store() +{ + auto& coarseLattice = this->_coarse.getSuperLattice(); + + for (int y=0; y < this->_coarseSize; ++y) { + const auto pos = this->getCoarseLatticeR(y); + + T rho{}; + T u[2] {}; + T fNeq[DESCRIPTOR::q] {}; + coarseLattice.get(pos).computeRhoU(rho, u); + computeFneq(coarseLattice.get(pos), fNeq); + + _c2f_rho[y] = rho; + _c2f_u[y] = Vector(u); + _c2f_fneq[y] = Vector::q>(fNeq); + } +} + +template class DESCRIPTOR> +void FineCoupler2D::interpolate() +{ + auto& coarseLattice = this->_coarse.getSuperLattice(); + + for (int y=0; y < this->_coarseSize; ++y) { + const auto coarsePos = this->getCoarseLatticeR(y); + + T rho{}; + T u[2] {}; + coarseLattice.get(coarsePos).computeRhoU(rho, u); + _c2f_rho[y] = order2interpolation(rho, _c2f_rho[y]); + _c2f_u[y][0] = order2interpolation(u[0], _c2f_u[y][0]); + _c2f_u[y][1] = order2interpolation(u[1], _c2f_u[y][1]); + + T fNeq[DESCRIPTOR::q] {}; + computeFneq(coarseLattice.get(coarsePos), fNeq); + for (int iPop=0; iPop < DESCRIPTOR::q; ++iPop) { + _c2f_fneq[y][iPop] = order2interpolation(fNeq[iPop], _c2f_fneq[y][iPop]); + } + } +} + +template class DESCRIPTOR> +void FineCoupler2D::couple() +{ + auto& coarseLattice = this->_coarse.getSuperLattice(); + auto& fineLattice = this->_fine.getSuperLattice(); + + for (int y=0; y < this->_coarseSize; ++y) { + const auto coarsePos = this->getCoarseLatticeR(y); + const auto finePos = this->getFineLatticeR(2*y); + + T fEq[DESCRIPTOR::q] {}; + computeFeq(coarseLattice.get(coarsePos), fEq); + + for (int iPop=0; iPop < DESCRIPTOR::q; ++iPop) { + fineLattice.get(finePos)[iPop] = fEq[iPop] + this->_coarse.getScalingFactor() * _c2f_fneq[y][iPop]; + } + } + + for (int y=1; y < this->_coarseSize-2; ++y) { + const T rho = order4interpolation( + _c2f_rho[y-1], + _c2f_rho[y], + _c2f_rho[y+1], + _c2f_rho[y+2] + ); + T u[2] {}; + u[0] = order4interpolation( + _c2f_u[y-1][0], + _c2f_u[y][0], + _c2f_u[y+1][0], + _c2f_u[y+2][0] + ); + u[1] = order4interpolation( + _c2f_u[y-1][1], + _c2f_u[y][1], + _c2f_u[y+1][1], + _c2f_u[y+2][1] + ); + const T uSqr = u[0]*u[0] + u[1]*u[1]; + + const auto finePos = this->getFineLatticeR(1+2*y); + + for (int iPop=0; iPop < DESCRIPTOR::q; ++iPop) { + const T fneq = order4interpolation( + _c2f_fneq[y-1][iPop], + _c2f_fneq[y][iPop], + _c2f_fneq[y+1][iPop], + _c2f_fneq[y+2][iPop] + ); + + fineLattice.get(finePos)[iPop] = lbHelpers::equilibrium(iPop, rho, u, uSqr) + this->_coarse.getScalingFactor() * fneq; + } + } + + { + const T rho = order3interpolation( + _c2f_rho[0], + _c2f_rho[1], + _c2f_rho[2] + ); + T u[2] {}; + u[0] = order3interpolation( + _c2f_u[0][0], + _c2f_u[1][0], + _c2f_u[2][0] + ); + u[1] = order3interpolation( + _c2f_u[0][1], + _c2f_u[1][1], + _c2f_u[2][1] + ); + const T uSqr = u[0]*u[0] + u[1]*u[1]; + + const auto finePos = this->getFineLatticeR(1); + + for (int iPop=0; iPop < DESCRIPTOR::q; ++iPop) { + const T fneq = order3interpolation( + _c2f_fneq[0][iPop], + _c2f_fneq[1][iPop], + _c2f_fneq[2][iPop] + ); + fineLattice.get(finePos)[iPop] = lbHelpers::equilibrium(iPop, rho, u, uSqr) + this->_coarse.getScalingFactor() * fneq; + } + } + + { + const T rho = order3interpolation( + _c2f_rho[this->_coarseSize-1], + _c2f_rho[this->_coarseSize-2], + _c2f_rho[this->_coarseSize-3] + ); + T u[2] {}; + u[0] = order3interpolation( + _c2f_u[this->_coarseSize-1][0], + _c2f_u[this->_coarseSize-2][0], + _c2f_u[this->_coarseSize-3][0] + ); + u[1] = order3interpolation( + _c2f_u[this->_coarseSize-1][1], + _c2f_u[this->_coarseSize-2][1], + _c2f_u[this->_coarseSize-3][1] + ); + const T uSqr = u[0]*u[0] + u[1]*u[1]; + + const auto finePos = this->getFineLatticeR(this->_fineSize-2); + + for (int iPop=0; iPop < DESCRIPTOR::q; ++iPop) { + const T fneq = order3interpolation( + _c2f_fneq[this->_coarseSize-1][iPop], + _c2f_fneq[this->_coarseSize-2][iPop], + _c2f_fneq[this->_coarseSize-3][iPop] + ); + fineLattice.get(finePos)[iPop] = lbHelpers::equilibrium(iPop, rho, u, uSqr) + this->_coarse.getScalingFactor() * fneq; + } + } +} + + +template class DESCRIPTOR> +CoarseCoupler2D::CoarseCoupler2D( + Grid2D& coarse, Grid2D& fine, + Vector origin, Vector extend): + Coupler2D(coarse, fine, origin, extend) +{ + OstreamManager clout(std::cout,"F2C"); + clout << "coarse origin: " << this->_coarseOrigin[0] << " " << this->_coarseOrigin[1] << " " << this->_coarseOrigin[2] << std::endl; + clout << "fine origin: " << this->_fineOrigin[0] << " " << this->_fineOrigin[1] << " " << this->_fineOrigin[2] << std::endl; + clout << "coarse size: " << this->_coarseSize << std::endl; +} + +template class DESCRIPTOR> +void CoarseCoupler2D::couple() +{ + auto& fineLattice = this->_fine.getSuperLattice(); + auto& coarseLattice = this->_coarse.getSuperLattice(); + + for (int y=0; y < this->_coarseSize; ++y) { + const auto finePos = this->getFineLatticeR(2*y); + const auto coarsePos = this->getCoarseLatticeR(y); + + T fEq[DESCRIPTOR::q] {}; + computeFeq(fineLattice.get(finePos), fEq); + + T fNeq[DESCRIPTOR::q] {}; + computeRestrictedFneq(fineLattice, finePos, fNeq); + + for (int iPop=0; iPop < DESCRIPTOR::q; ++iPop) { + coarseLattice.get(coarsePos)[iPop] = fEq[iPop] + this->_coarse.getInvScalingFactor() * fNeq[iPop]; + } + } +} + + +} + +#endif -- cgit v1.2.3