/*
* Lattice Boltzmann grid refinement sample, written in C++,
* using the OpenLB library
*
* Copyright (C) 2019 Adrian Kummerländer
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
namespace SchaeferTurek {
const T deltaR = cylinderD / N; // coarse lattice spacing
const Vector modelOrigin {0.0, 0.0};
const Vector modelExtend {22*cylinderD + deltaR, 4.1*cylinderD + deltaR};
const Vector cylinderCenter {2*cylinderD, 2*cylinderD};
void prepareGeometry(Grid2D& grid, Vector origin, Vector extend)
{
OstreamManager clout(std::cout,"prepareGeometry");
clout << "Prepare Geometry ..." << std::endl;
auto& converter = grid.getConverter();
auto& sGeometry = grid.getSuperGeometry();
sGeometry.rename(0,1);
const T physSpacing = converter.getPhysDeltaX();
// Set material number for channel walls
{
const Vector wallExtend { extend[0]+physSpacing/2, physSpacing/2 };
const Vector wallOrigin = origin - physSpacing/4;
IndicatorCuboid2D lowerWall(wallExtend, wallOrigin);
sGeometry.rename(1,2,lowerWall);
}
{
const Vector wallExtend { extend[0]+physSpacing/2, physSpacing/2 };
const Vector wallOrigin { origin[0]-physSpacing/4, extend[1]-physSpacing/4 };
IndicatorCuboid2D upperWall(wallExtend, wallOrigin);
sGeometry.rename(1,2,upperWall);
}
// Set material number for inflow and outflow
{
const Vector inflowExtend { physSpacing/2, extend[1]+physSpacing/4 };
const Vector inflowOrigin = origin - physSpacing/4;
IndicatorCuboid2D inflow(inflowExtend, inflowOrigin);
sGeometry.rename(1,3,inflow);
}
{
const Vector outflowExtend { physSpacing/2, extend[1]+physSpacing/4 };
const Vector outflowOrigin { extend[0]-physSpacing/4, origin[0]-physSpacing/4 };
IndicatorCuboid2D outflow(outflowExtend, outflowOrigin);
sGeometry.rename(1,4,outflow);
}
// Set material number for vertically centered cylinder
{
const Vector cylinderOrigin = origin + Vector {cylinderCenter[0], cylinderCenter[1]+physSpacing/2};
IndicatorCircle2D obstacle(cylinderOrigin, cylinderD/2);
sGeometry.rename(1,5,obstacle);
}
sGeometry.clean();
sGeometry.innerClean();
sGeometry.checkForErrors();
clout << "Prepare Geometry ... OK" << std::endl;
}
void prepareLattice(Grid2D& grid)
{
OstreamManager clout(std::cout,"prepareLattice");
clout << "Prepare lattice ..." << std::endl;
auto& converter = grid.getConverter();
auto& sGeometry = grid.getSuperGeometry();
auto& sLattice = grid.getSuperLattice();
const T physSpacing = converter.getPhysDeltaX();
Dynamics& bulkDynamics = grid.addDynamics(
std::unique_ptr>(
new BGKdynamics(
grid.getConverter().getLatticeRelaxationFrequency(),
instances::getBulkMomenta())));
sOnLatticeBoundaryCondition2D& sBoundaryCondition = grid.getOnLatticeBoundaryCondition();
createLocalBoundaryCondition2D(sBoundaryCondition);
sOffLatticeBoundaryCondition2D& sOffBoundaryCondition = grid.getOffLatticeBoundaryCondition();
createBouzidiBoundaryCondition2D(sOffBoundaryCondition);
sLattice.defineDynamics(sGeometry, 0, &instances::getNoDynamics());
sLattice.defineDynamics(sGeometry, 1, &bulkDynamics); // bulk
sLattice.defineDynamics(sGeometry, 2, &bulkDynamics); // walls
sLattice.defineDynamics(sGeometry, 3, &bulkDynamics); // inflow
sLattice.defineDynamics(sGeometry, 4, &bulkDynamics); // outflow
sLattice.defineDynamics(sGeometry, 5, &instances::getNoDynamics());
const T omega = converter.getLatticeRelaxationFrequency();
sBoundaryCondition.addVelocityBoundary(sGeometry, 2, omega);
sBoundaryCondition.addVelocityBoundary(sGeometry, 3, omega);
sBoundaryCondition.addPressureBoundary(sGeometry, 4, omega);
const Vector cylinderOrigin {cylinderCenter[0], cylinderCenter[1]+physSpacing/2};
IndicatorCircle2D obstacle(cylinderOrigin, cylinderD/2);
sOffBoundaryCondition.addZeroVelocityBoundary(sGeometry, 5, obstacle);
AnalyticalConst2D rho0(1.0);
AnalyticalConst2D u0(0.0, 0.0);
auto materials = sGeometry.getMaterialIndicator({1, 2, 3, 4});
sLattice.defineRhoU(materials, rho0, u0);
sLattice.iniEquilibrium(materials, rho0, u0);
sLattice.initialize();
clout << "Prepare lattice ... OK" << std::endl;
sGeometry.print();
}
void setBoundaryValues(Grid2D& grid, int iT)
{
auto& converter = grid.getConverter();
auto& sGeometry = grid.getSuperGeometry();
auto& sLattice = grid.getSuperLattice();
const int iTmaxStart = converter.getLatticeTime(0.4*16);
const int iTupdate = 5;
if ( iT % iTupdate == 0 && iT <= iTmaxStart ) {
PolynomialStartScale StartScale(iTmaxStart, 1);
T iTvec[1] { T(iT) };
T frac[1] { };
StartScale(frac, iTvec);
const T maxVelocity = converter.getCharLatticeVelocity() * 3./2. * frac[0];
Poiseuille2D u(sGeometry, 3, maxVelocity, converter.getPhysDeltaX()/2);
sLattice.defineU(sGeometry, 3, u);
}
}
void getResults(Grid2D& grid,
const std::string& prefix,
int iT)
{
auto& converter = grid.getConverter();
auto& sLattice = grid.getSuperLattice();
auto& sGeometry = grid.getSuperGeometry();
SuperVTMwriter2D vtmWriter(prefix);
SuperLatticePhysVelocity2D velocity(sLattice, converter);
SuperLatticePhysPressure2D pressure(sLattice, converter);
SuperLatticeGeometry2D geometry(sLattice, sGeometry);
SuperLatticeKnudsen2D knudsen(sLattice);
SuperLatticeRefinementMetricKnudsen2D quality(sLattice, converter);
vtmWriter.addFunctor(geometry);
vtmWriter.addFunctor(velocity);
vtmWriter.addFunctor(pressure);
vtmWriter.addFunctor(knudsen);
vtmWriter.addFunctor(quality);
if (iT==0) {
vtmWriter.createMasterFile();
}
vtmWriter.write(iT);
}
void takeMeasurements(Grid2D& grid, int iT, bool print=true)
{
auto& sLattice = grid.getSuperLattice();
auto& sGeometry = grid.getSuperGeometry();
auto& converter = grid.getConverter();
const T physSpacing = converter.getPhysDeltaX();
SuperLatticePhysPressure2D pressure(sLattice, converter);
AnalyticalFfromSuperF2D intpolatePressure(pressure, true);
SuperLatticePhysDrag2D dragF(sLattice, sGeometry, 5, converter);
const T radiusCylinder = cylinderD/2;
const T point1[2] { cylinderCenter[0] - radiusCylinder, cylinderCenter[1]+physSpacing/2 };
const T point2[2] { cylinderCenter[0] + radiusCylinder, cylinderCenter[1]+physSpacing/2 };
T pressureInFrontOfCylinder, pressureBehindCylinder;
intpolatePressure(&pressureInFrontOfCylinder, point1);
intpolatePressure(&pressureBehindCylinder, point2);
const T pressureDrop = pressureInFrontOfCylinder - pressureBehindCylinder;
const int input[3] {};
T drag[dragF.getTargetDim()] {};
dragF(drag, input);
static Gnuplot gplot("results");
gplot.setData(converter.getPhysTime(iT), {drag[0], drag[1], pressureDrop}, {"drag", "lift", "deltaP"}, "bottom right", {'l','l'});
gplot.writePNG();
if (print) {
OstreamManager clout(std::cout, "measurement");
clout << "pressureDrop=" << pressureDrop
<< "; drag=" << drag[0]
<< "; lift=" << drag[1]
<< endl;
}
}
}