/* * Lattice Boltzmann grid refinement sample, written in C++, * using the OpenLB library * * Copyright (C) 2019 Adrian Kummerländer * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ namespace SchaeferTurek { const T deltaR = cylinderD / N; // coarse lattice spacing const Vector modelOrigin {0.0, 0.0}; const Vector modelExtend {22*cylinderD + deltaR, 4.1*cylinderD + deltaR}; const Vector cylinderCenter {2*cylinderD, 2*cylinderD + deltaR/2}; void prepareGeometry(Grid2D& grid, Vector origin, Vector extend) { OstreamManager clout(std::cout,"prepareGeometry"); clout << "Prepare Geometry ..." << std::endl; auto& converter = grid.getConverter(); auto& sGeometry = grid.getSuperGeometry(); sGeometry.rename(0,1); const T physSpacing = converter.getPhysDeltaX(); // Set material number for channel walls { const Vector wallExtend { extend[0]+physSpacing/2, physSpacing/2 }; const Vector wallOrigin = origin - physSpacing/4; IndicatorCuboid2D lowerWall(wallExtend, wallOrigin); sGeometry.rename(1,2,lowerWall); } { const Vector wallExtend { extend[0]+physSpacing/2, physSpacing/2 }; const Vector wallOrigin { origin[0]-physSpacing/4, extend[1]-physSpacing/4 }; IndicatorCuboid2D upperWall(wallExtend, wallOrigin); sGeometry.rename(1,2,upperWall); } // Set material number for inflow and outflow { const Vector inflowExtend { physSpacing/2, extend[1]+physSpacing/4 }; const Vector inflowOrigin = origin - physSpacing/4; IndicatorCuboid2D inflow(inflowExtend, inflowOrigin); sGeometry.rename(1,3,inflow); } { const Vector outflowExtend { physSpacing/2, extend[1]+physSpacing/4 }; const Vector outflowOrigin { extend[0]-physSpacing/4, origin[0]-physSpacing/4 }; IndicatorCuboid2D outflow(outflowExtend, outflowOrigin); sGeometry.rename(1,4,outflow); } // Set material number for vertically centered cylinder { const Vector cylinderOrigin = origin + Vector {cylinderCenter[0], cylinderCenter[1]}; IndicatorCircle2D obstacle(cylinderOrigin, cylinderD/2); sGeometry.rename(1,5,obstacle); } sGeometry.clean(); sGeometry.innerClean(); sGeometry.checkForErrors(); clout << "Prepare Geometry ... OK" << std::endl; } void prepareLattice(Grid2D& grid) { OstreamManager clout(std::cout,"prepareLattice"); clout << "Prepare lattice ..." << std::endl; auto& converter = grid.getConverter(); auto& sGeometry = grid.getSuperGeometry(); auto& sLattice = grid.getSuperLattice(); Dynamics& bulkDynamics = grid.addDynamics( std::unique_ptr>( new BGKdynamics( grid.getConverter().getLatticeRelaxationFrequency(), instances::getBulkMomenta()))); sOnLatticeBoundaryCondition2D& sBoundaryCondition = grid.getOnLatticeBoundaryCondition(); createLocalBoundaryCondition2D(sBoundaryCondition); const T omega = converter.getLatticeRelaxationFrequency(); sLattice.defineDynamics(sGeometry, 0, &instances::getNoDynamics()); sLattice.defineDynamics(sGeometry, 1, &bulkDynamics); // bulk sLattice.defineDynamics(sGeometry, 2, &bulkDynamics); // walls sLattice.defineDynamics(sGeometry, 3, &bulkDynamics); // inflow sLattice.defineDynamics(sGeometry, 4, &bulkDynamics); // outflow sLattice.defineDynamics(sGeometry, 5, &instances::getBounceBack()); // cylinder sBoundaryCondition.addVelocityBoundary(sGeometry, 2, omega); sBoundaryCondition.addVelocityBoundary(sGeometry, 3, omega); sBoundaryCondition.addPressureBoundary(sGeometry, 4, omega); AnalyticalConst2D rho0(1.0); AnalyticalConst2D u0(0.0, 0.0); auto materials = sGeometry.getMaterialIndicator({1, 2, 3, 4}); sLattice.defineRhoU(materials, rho0, u0); sLattice.iniEquilibrium(materials, rho0, u0); sLattice.initialize(); clout << "Prepare lattice ... OK" << std::endl; sGeometry.print(); } void setBoundaryValues(Grid2D& grid, int iT) { auto& converter = grid.getConverter(); auto& sGeometry = grid.getSuperGeometry(); auto& sLattice = grid.getSuperLattice(); const int iTmaxStart = converter.getLatticeTime(0.4*16); const int iTupdate = 5; if ( iT % iTupdate == 0 && iT <= iTmaxStart ) { PolynomialStartScale StartScale(iTmaxStart, 1); T iTvec[1] { T(iT) }; T frac[1] { }; StartScale(frac, iTvec); const T maxVelocity = converter.getCharLatticeVelocity() * 3./2. * frac[0]; Poiseuille2D u(sGeometry, 3, maxVelocity, converter.getPhysDeltaX()/2); sLattice.defineU(sGeometry, 3, u); } } void getResults(Grid2D& grid, const std::string& prefix, int iT) { auto& converter = grid.getConverter(); auto& sLattice = grid.getSuperLattice(); auto& sGeometry = grid.getSuperGeometry(); SuperVTMwriter2D vtmWriter(prefix); SuperLatticePhysVelocity2D velocity(sLattice, converter); SuperLatticePhysPressure2D pressure(sLattice, converter); SuperLatticeGeometry2D geometry(sLattice, sGeometry); SuperLatticeKnudsen2D knudsen(sLattice); SuperLatticeRefinementMetricKnudsen2D quality(sLattice, converter); vtmWriter.addFunctor(geometry); vtmWriter.addFunctor(velocity); vtmWriter.addFunctor(pressure); vtmWriter.addFunctor(knudsen); vtmWriter.addFunctor(quality); if (iT==0) { vtmWriter.createMasterFile(); } vtmWriter.write(iT); } void takeMeasurements(Grid2D& grid, int iT, bool print=true) { auto& sLattice = grid.getSuperLattice(); auto& sGeometry = grid.getSuperGeometry(); auto& converter = grid.getConverter(); SuperLatticePhysPressure2D pressure(sLattice, converter); AnalyticalFfromSuperF2D intpolatePressure(pressure, true); SuperLatticePhysDrag2D dragF(sLattice, sGeometry, 5, converter); const T radiusCylinder = cylinderD/2; const T point1[2] { cylinderCenter[0] - radiusCylinder, cylinderCenter[1] }; const T point2[2] { cylinderCenter[0] + radiusCylinder, cylinderCenter[1] }; T pressureInFrontOfCylinder, pressureBehindCylinder; intpolatePressure(&pressureInFrontOfCylinder, point1); intpolatePressure(&pressureBehindCylinder, point2); const T pressureDrop = pressureInFrontOfCylinder - pressureBehindCylinder; const int input[3] {}; T drag[dragF.getTargetDim()] {}; dragF(drag, input); static Gnuplot gplot("results"); gplot.setData(converter.getPhysTime(iT), {drag[0], drag[1], pressureDrop}, {"drag", "lift", "deltaP"}, "bottom right", {'l','l'}); gplot.writePNG(); if (print) { OstreamManager clout(std::cout, "measurement"); clout << "pressureDrop=" << pressureDrop << "; drag=" << drag[0] << "; lift=" << drag[1] << endl; } } }