/* * Lattice Boltzmann grid refinement sample, written in C++, * using the OpenLB library * * Copyright (C) 2019 Adrian Kummerländer * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "olb2D.h" #ifndef OLB_PRECOMPILED #include "olb2D.hh" #endif #include using namespace olb; typedef double T; #define DESCRIPTOR descriptors::D2Q9Descriptor /// Setup geometry relative to cylinder diameter as defined by [SchaeferTurek96] const T cylinderD = 1.0; const int N = 5; // resolution of the model const T lx = 22 * cylinderD; // length of the channel const T ly = 4.1 * cylinderD; // height of the channel const T Re = 100.; // Reynolds number const T uLat = 0.05; // lattice velocity const T maxPhysT = 60.; // max. simulation time in s, SI unit void prepareGeometry(Grid2D& grid) { OstreamManager clout(std::cout,"prepareGeometry"); clout << "Prepare Geometry ..." << std::endl; auto& converter = grid.getConverter(); auto& sGeometry = grid.getSuperGeometry(); sGeometry.rename(0,1); const T physSpacing = converter.getPhysDeltaX(); // Set material number for bounce back boundaries { const Vector wallExtend {lx+physSpacing, physSpacing}; const Vector wallOrigin {-physSpacing/2, -physSpacing/2}; IndicatorCuboid2D lowerWall(wallExtend, wallOrigin); sGeometry.rename(1,2,lowerWall); IndicatorCuboid2D upperWall(wallExtend, wallOrigin + Vector {0,ly-physSpacing/2}); sGeometry.rename(1,2,upperWall); } // Set material number for inflow and outflow { const Vector extend { physSpacing/2, ly-physSpacing/2}; const Vector origin {-physSpacing/4, -physSpacing/4}; IndicatorCuboid2D inflow(extend, origin); sGeometry.rename(1,3,inflow); IndicatorCuboid2D outflow(extend, origin + Vector {lx,0}); sGeometry.rename(1,4,outflow); } // Set material number for vertically centered cylinder { const Vector origin {2*cylinderD, 2*cylinderD}; IndicatorCircle2D obstacle(origin, cylinderD/2); sGeometry.rename(1,5,obstacle); } sGeometry.clean(); sGeometry.innerClean(); sGeometry.checkForErrors(); sGeometry.print(); clout << "Prepare Geometry ... OK" << std::endl; } void disableRefinedArea(Grid2D& coarseGrid, RefiningGrid2D& fineGrid) { auto& sGeometry = coarseGrid.getSuperGeometry(); auto refinedOverlap = fineGrid.getRefinedOverlap(); sGeometry.rename(1,0,*refinedOverlap); sGeometry.rename(2,0,*refinedOverlap); sGeometry.rename(5,0,*refinedOverlap); } void prepareLattice(Grid2D& grid) { OstreamManager clout(std::cout,"prepareLattice"); clout << "Prepare lattice ..." << std::endl; auto& converter = grid.getConverter(); auto& sGeometry = grid.getSuperGeometry(); auto& sLattice = grid.getSuperLattice(); Dynamics& bulkDynamics = grid.addDynamics( std::unique_ptr>( new BGKdynamics( grid.getConverter().getLatticeRelaxationFrequency(), instances::getBulkMomenta()))); sOnLatticeBoundaryCondition2D& sBoundaryCondition = grid.getOnLatticeBoundaryCondition(); createLocalBoundaryCondition2D(sBoundaryCondition); const T omega = converter.getLatticeRelaxationFrequency(); sLattice.defineDynamics(sGeometry, 0, &instances::getNoDynamics()); sLattice.defineDynamics(sGeometry, 1, &bulkDynamics); // bulk sLattice.defineDynamics(sGeometry, 2, &bulkDynamics); // walls sLattice.defineDynamics(sGeometry, 3, &bulkDynamics); // inflow sLattice.defineDynamics(sGeometry, 4, &bulkDynamics); // outflow sLattice.defineDynamics(sGeometry, 5, &instances::getBounceBack()); // cylinder sBoundaryCondition.addVelocityBoundary(sGeometry, 2, omega); sBoundaryCondition.addVelocityBoundary(sGeometry, 3, omega); sBoundaryCondition.addPressureBoundary(sGeometry, 4, omega); AnalyticalConst2D rho0(1.0); AnalyticalConst2D u0(0.0, 0.0); auto materials = sGeometry.getMaterialIndicator({1, 2, 3, 4, 5}); sLattice.defineRhoU(materials, rho0, u0); sLattice.iniEquilibrium(materials, rho0, u0); sLattice.initialize(); clout << "Prepare lattice ... OK" << std::endl; } void setBoundaryValues(Grid2D& grid, int iT) { auto& converter = grid.getConverter(); auto& sGeometry = grid.getSuperGeometry(); auto& sLattice = grid.getSuperLattice(); const int iTmaxStart = converter.getLatticeTime(0.2*maxPhysT); const int iTupdate = 10; if ( iT % iTupdate == 0 && iT <= iTmaxStart ) { PolynomialStartScale StartScale(iTmaxStart, 1); T iTvec[1] { T(iT) }; T frac[1] { }; StartScale(frac, iTvec); const T maxVelocity = converter.getCharLatticeVelocity() * frac[0]; const T radius = ly/2; std::vector axisPoint{0, ly/2}; std::vector axisDirection{1, 0}; Poiseuille2D u(axisPoint, axisDirection, maxVelocity, radius); sLattice.defineU(sGeometry, 3, u); } } void getResults(const std::string& prefix, Grid2D& grid, int iT) { OstreamManager clout(std::cout,"getResults"); auto& converter = grid.getConverter(); auto& sLattice = grid.getSuperLattice(); auto& sGeometry = grid.getSuperGeometry(); SuperVTMwriter2D vtmWriter(prefix + "cylinder2d"); SuperLatticePhysVelocity2D velocity(sLattice, converter); SuperLatticePhysPressure2D pressure(sLattice, converter); SuperLatticeGeometry2D geometry(sLattice, sGeometry); SuperLatticeKnudsen2D knudsen(sLattice); vtmWriter.addFunctor(geometry); vtmWriter.addFunctor(velocity); vtmWriter.addFunctor(pressure); vtmWriter.addFunctor(knudsen); if (iT==0) { vtmWriter.createMasterFile(); } if (iT%100==0) { vtmWriter.write(iT); } } int main(int argc, char* argv[]) { olbInit(&argc, &argv); singleton::directories().setOutputDir("./tmp/"); OstreamManager clout(std::cout,"main"); const Vector coarseOrigin {0.0, 0.0}; const Vector coarseExtend {lx, ly}; IndicatorCuboid2D coarseCuboid(coarseExtend, coarseOrigin); Grid2D coarseGrid(coarseCuboid, N, LatticeVelocity(uLat), Re); prepareGeometry(coarseGrid); const auto coarseDeltaX = coarseGrid.getConverter().getPhysDeltaX(); const Vector fineExtend {8*cylinderD, ly-2*coarseDeltaX}; const Vector fineOrigin {0.75*cylinderD, coarseDeltaX}; auto& fineGrid = coarseGrid.refine(fineOrigin, fineExtend); prepareGeometry(fineGrid); const Vector fineExtendB {10*coarseDeltaX, ly}; const Vector fineOriginB {lx-10*coarseDeltaX, 0}; auto& fineOutflowGrid = coarseGrid.refine(fineOriginB, fineExtendB, false); prepareGeometry(fineOutflowGrid); { const Vector origin = fineOutflowGrid.getOrigin(); const Vector extend = fineOutflowGrid.getExtend(); const Vector extendY = {0,extend[1]}; coarseGrid.addFineCoupling(fineOutflowGrid, origin, extendY); coarseGrid.addCoarseCoupling(fineOutflowGrid, origin + Vector {coarseDeltaX,0}, extendY); IndicatorCuboid2D refined(extend, origin + Vector {2*coarseDeltaX,0}); coarseGrid.getSuperGeometry().rename(1,0,refined); coarseGrid.getSuperGeometry().rename(2,0,refined); coarseGrid.getSuperGeometry().rename(4,0,refined); } disableRefinedArea(coarseGrid, fineGrid); const Vector fineExtend2 {4*cylinderD, 2*cylinderD}; const Vector fineOrigin2 {1*cylinderD, 2*cylinderD-fineExtend2[1]/2}; auto& fineGrid2 = fineGrid.refine(fineOrigin2, fineExtend2); prepareGeometry(fineGrid2); disableRefinedArea(fineGrid, fineGrid2); prepareLattice(coarseGrid); prepareLattice(fineGrid); prepareLattice(fineOutflowGrid); prepareLattice(fineGrid2); clout << "Starting simulation..." << endl; Timer timer( coarseGrid.getConverter().getLatticeTime(maxPhysT), coarseGrid.getSuperGeometry().getStatistics().getNvoxel()); timer.start(); const int statIter = coarseGrid.getConverter().getLatticeTime(0.5); for (int iT = 0; iT < coarseGrid.getConverter().getLatticeTime(maxPhysT); ++iT) { setBoundaryValues(coarseGrid, iT); coarseGrid.collideAndStream(); getResults("level0_", coarseGrid, iT); getResults("level1_", fineGrid, iT); getResults("level1_outflow_", fineOutflowGrid, iT); getResults("level2_", fineGrid2, iT); if (iT%statIter == 0) { timer.update(iT); timer.printStep(); coarseGrid.getSuperLattice().getStatistics().print(iT, coarseGrid.getConverter().getPhysTime(iT)); } } timer.stop(); timer.printSummary(); }