/* * Lattice Boltzmann grid refinement sample, written in C++, * using the OpenLB library * * Copyright (C) 2019 Adrian Kummerländer * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "olb2D.h" #ifndef OLB_PRECOMPILED #include "olb2D.hh" #endif using namespace olb; typedef double T; #define DESCRIPTOR descriptors::D2Q9Descriptor /// Setup geometry relative to cylinder diameter as defined by [SchaeferTurek96] const T cylinderD = 0.1; const int N = 5; // resolution of the cylinder const T Re = 100.; // Reynolds number const T tau = 0.51; // relaxation time const T maxPhysT = 16.; // max. simulation time in s, SI unit const Characteristics PhysCharacteristics( cylinderD, // char. phys. length 1.0, // char. phys. velocity 0.1/Re, // phsy. kinematic viscosity 1.0); // char. phys. density #include "../common/model.h" void setupRefinement(Grid2D& coarseGrid, Vector domainOrigin, Vector domainExtend) { const auto coarseDeltaX = coarseGrid.getConverter().getPhysDeltaX(); const Vector fineOutflowExtend {1*cylinderD, domainExtend[1]}; const Vector fineOutflowOrigin {domainExtend[0]-1*cylinderD, 0}; auto& fineOutflowGrid = coarseGrid.refine(fineOutflowOrigin, fineOutflowExtend, false); SchaeferTurek::prepareGeometry(fineOutflowGrid, domainOrigin, domainExtend); { const Vector origin = fineOutflowGrid.getOrigin(); const Vector extend = fineOutflowGrid.getExtend(); const Vector extendY = {0,extend[1]}; coarseGrid.addFineCoupling(fineOutflowGrid, origin, extendY); coarseGrid.addCoarseCoupling(fineOutflowGrid, origin + Vector {coarseDeltaX,0}, extendY); IndicatorCuboid2D refined(extend, origin + Vector {2*coarseDeltaX,0}); coarseGrid.getSuperGeometry().reset(refined); } const Vector fineOutflowExtend2 {0.5*cylinderD, domainExtend[1]}; const Vector fineOutflowOrigin2 {domainExtend[0]-0.5*cylinderD, 0}; auto& fineOutflowGrid2 = fineOutflowGrid.refine(fineOutflowOrigin2, fineOutflowExtend2, false); SchaeferTurek::prepareGeometry(fineOutflowGrid2, domainOrigin, domainExtend); { const Vector origin = fineOutflowGrid2.getOrigin(); const Vector extend = fineOutflowGrid2.getExtend(); const Vector extendY = {0,extend[1]}; fineOutflowGrid.addFineCoupling(fineOutflowGrid2, origin, extendY); fineOutflowGrid.addCoarseCoupling(fineOutflowGrid2, origin + Vector {coarseDeltaX,0}, extendY); IndicatorCuboid2D refined(extend, origin + Vector {coarseDeltaX,0}); fineOutflowGrid.getSuperGeometry().reset(refined); } } int main(int argc, char* argv[]) { olbInit(&argc, &argv); singleton::directories().setOutputDir("./tmp/"); OstreamManager clout(std::cout,"main"); IndicatorCuboid2D coarseCuboid(SchaeferTurek::modelExtend, SchaeferTurek::modelOrigin); Grid2D coarseGrid( coarseCuboid, RelaxationTime(tau), N, PhysCharacteristics); const Vector domainOrigin = coarseGrid.getSuperGeometry().getStatistics().getMinPhysR(0); const Vector domainExtend = coarseGrid.getSuperGeometry().getStatistics().getPhysExtend(0); SchaeferTurek::prepareGeometry(coarseGrid, domainOrigin, domainExtend); setupRefinement(coarseGrid, domainOrigin, domainExtend); coarseGrid.forEachGrid(SchaeferTurek::prepareLattice); clout << "Total number of active cells: " << coarseGrid.getActiveVoxelN() << endl; clout << "Starting simulation..." << endl; const int statIter = coarseGrid.getConverter().getLatticeTime(0.5); Timer timer( coarseGrid.getConverter().getLatticeTime(maxPhysT), coarseGrid.getSuperGeometry().getStatistics().getNvoxel()); timer.start(); Grid2D& cylinderGrid = coarseGrid.locate(SchaeferTurek::cylinderCenter); for (int iT = 0; iT <= coarseGrid.getConverter().getLatticeTime(maxPhysT); ++iT) { SchaeferTurek::setBoundaryValues(coarseGrid, iT); coarseGrid.collideAndStream(); if (iT == 0 || iT%statIter == 0) { timer.update(iT); timer.printStep(); coarseGrid.forEachGrid("cylinder2d", [&](Grid2D& grid, const std::string& id) { SchaeferTurek::getResults(grid, id, iT); }); SchaeferTurek::takeMeasurements(cylinderGrid, iT); } } timer.stop(); timer.printSummary(); }