/* * Lattice Boltzmann grid refinement sample, written in C++, * using the OpenLB library * * Copyright (C) 2019 Adrian Kummerländer * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "olb2D.h" #ifndef OLB_PRECOMPILED #include "olb2D.hh" #endif #include using namespace olb; typedef double T; #define DESCRIPTOR descriptors::D2Q9Descriptor /// Setup geometry relative to cylinder diameter as defined by [SchaeferTurek96] const T cylinderD = 0.1; const int N = 5; // resolution of the cylinder const T deltaR = cylinderD / N; // coarse lattice spacing const T lx = 22*cylinderD + deltaR; // length of the channel const T ly = 4.1*cylinderD + deltaR; // height of the channel const T cylinderX = 2*cylinderD; const T cylinderY = 2*cylinderD + deltaR/2; const T Re = 100.; // Reynolds number const T tau = 0.51; // relaxation time const T maxPhysT = 16.; // max. simulation time in s, SI unit const Characteristics PhysCharacteristics( 0.1, // char. phys. length 1.0, // char. phys. velocity 0.1/Re, // phsy. kinematic viscosity 1.0); // char. phys. density void prepareGeometry(Grid2D& grid, Vector origin, Vector extend) { OstreamManager clout(std::cout,"prepareGeometry"); clout << "Prepare Geometry ..." << std::endl; auto& converter = grid.getConverter(); auto& sGeometry = grid.getSuperGeometry(); sGeometry.rename(0,1); const T physSpacing = converter.getPhysDeltaX(); // Set material number for channel walls { const Vector wallExtend { extend[0]+physSpacing/2, physSpacing/2 }; const Vector wallOrigin = origin - physSpacing/4; IndicatorCuboid2D lowerWall(wallExtend, wallOrigin); sGeometry.rename(1,2,lowerWall); } { const Vector wallExtend { extend[0]+physSpacing/2, physSpacing/2 }; const Vector wallOrigin { origin[0]-physSpacing/4, extend[1]-physSpacing/4 }; IndicatorCuboid2D upperWall(wallExtend, wallOrigin); sGeometry.rename(1,2,upperWall); } // Set material number for inflow and outflow { const Vector inflowExtend { physSpacing/2, extend[1]+physSpacing/4 }; const Vector inflowOrigin = origin - physSpacing/4; IndicatorCuboid2D inflow(inflowExtend, inflowOrigin); sGeometry.rename(1,3,inflow); } { const Vector outflowExtend { physSpacing/2, extend[1]+physSpacing/4 }; const Vector outflowOrigin { extend[0]-physSpacing/4, origin[0]-physSpacing/4 }; IndicatorCuboid2D outflow(outflowExtend, outflowOrigin); sGeometry.rename(1,4,outflow); } // Set material number for vertically centered cylinder { const Vector cylinderOrigin = origin + Vector {cylinderX, cylinderY}; IndicatorCircle2D obstacle(cylinderOrigin, cylinderD/2); sGeometry.rename(1,5,obstacle); } sGeometry.clean(); sGeometry.innerClean(); sGeometry.checkForErrors(); clout << "Prepare Geometry ... OK" << std::endl; } void disableRefinedArea(Grid2D& coarseGrid, RefiningGrid2D& fineGrid) { auto& sGeometry = coarseGrid.getSuperGeometry(); auto refinedOverlap = fineGrid.getRefinedOverlap(); sGeometry.reset(*refinedOverlap); } void prepareLattice(Grid2D& grid) { OstreamManager clout(std::cout,"prepareLattice"); clout << "Prepare lattice ..." << std::endl; auto& converter = grid.getConverter(); auto& sGeometry = grid.getSuperGeometry(); auto& sLattice = grid.getSuperLattice(); Dynamics& bulkDynamics = grid.addDynamics( std::unique_ptr>( new BGKdynamics( grid.getConverter().getLatticeRelaxationFrequency(), instances::getBulkMomenta()))); sOnLatticeBoundaryCondition2D& sBoundaryCondition = grid.getOnLatticeBoundaryCondition(); //createInterpBoundaryCondition2D(sBoundaryCondition); createLocalBoundaryCondition2D(sBoundaryCondition); const T omega = converter.getLatticeRelaxationFrequency(); sLattice.defineDynamics(sGeometry, 0, &instances::getNoDynamics()); sLattice.defineDynamics(sGeometry, 1, &bulkDynamics); // bulk sLattice.defineDynamics(sGeometry, 2, &bulkDynamics); // walls sLattice.defineDynamics(sGeometry, 3, &bulkDynamics); // inflow sLattice.defineDynamics(sGeometry, 4, &bulkDynamics); // outflow sLattice.defineDynamics(sGeometry, 5, &instances::getBounceBack()); // cylinder sBoundaryCondition.addVelocityBoundary(sGeometry, 2, omega); sBoundaryCondition.addVelocityBoundary(sGeometry, 3, omega); sBoundaryCondition.addPressureBoundary(sGeometry, 4, omega); AnalyticalConst2D rho0(1.0); AnalyticalConst2D u0(0.0, 0.0); auto materials = sGeometry.getMaterialIndicator({1, 2, 3, 4}); sLattice.defineRhoU(materials, rho0, u0); sLattice.iniEquilibrium(materials, rho0, u0); sLattice.initialize(); clout << "Prepare lattice ... OK" << std::endl; sGeometry.print(); } void setBoundaryValues(Grid2D& grid, int iT) { auto& converter = grid.getConverter(); auto& sGeometry = grid.getSuperGeometry(); auto& sLattice = grid.getSuperLattice(); const int iTmaxStart = converter.getLatticeTime(0.4*16); const int iTupdate = 5; if ( iT % iTupdate == 0 && iT <= iTmaxStart ) { PolynomialStartScale StartScale(iTmaxStart, 1); T iTvec[1] { T(iT) }; T frac[1] { }; StartScale(frac, iTvec); const T maxVelocity = converter.getCharLatticeVelocity() * 3./2. * frac[0]; Poiseuille2D u(sGeometry, 3, maxVelocity, deltaR/2); sLattice.defineU(sGeometry, 3, u); } } void getResults(const std::string& prefix, Grid2D& grid, int iT) { OstreamManager clout(std::cout,"getResults"); auto& converter = grid.getConverter(); auto& sLattice = grid.getSuperLattice(); auto& sGeometry = grid.getSuperGeometry(); SuperVTMwriter2D vtmWriter(prefix + "cylinder2d"); SuperLatticePhysVelocity2D velocity(sLattice, converter); SuperLatticePhysPressure2D pressure(sLattice, converter); SuperLatticeGeometry2D geometry(sLattice, sGeometry); SuperLatticeKnudsen2D knudsen(sLattice); vtmWriter.addFunctor(geometry); vtmWriter.addFunctor(velocity); vtmWriter.addFunctor(pressure); vtmWriter.addFunctor(knudsen); if (iT==0) { vtmWriter.createMasterFile(); } vtmWriter.write(iT); } void takeMeasurements(Grid2D& grid) { static T maxDrag = 0.0; OstreamManager clout(std::cout,"measurement"); auto& sLattice = grid.getSuperLattice(); auto& sGeometry = grid.getSuperGeometry(); auto& converter = grid.getConverter(); SuperLatticePhysPressure2D pressure(sLattice, converter); AnalyticalFfromSuperF2D intpolatePressure(pressure, true); SuperLatticePhysDrag2D dragF(sLattice, sGeometry, 5, converter); const T radiusCylinder = cylinderD/2; const T point1[2] { cylinderX - radiusCylinder, cylinderY }; const T point2[2] { cylinderX + radiusCylinder, cylinderY }; T pressureInFrontOfCylinder, pressureBehindCylinder; intpolatePressure(&pressureInFrontOfCylinder, point1); intpolatePressure(&pressureBehindCylinder, point2); T pressureDrop = pressureInFrontOfCylinder - pressureBehindCylinder; clout << "pressureDrop=" << pressureDrop; const int input[3] {}; T drag[dragF.getTargetDim()] {}; dragF(drag, input); if (drag[0] > maxDrag) { maxDrag = drag[0]; }; clout << "; drag=" << drag[0] << "; maxDrag: " << maxDrag << "; lift=" << drag[1] << endl; } int main(int argc, char* argv[]) { olbInit(&argc, &argv); singleton::directories().setOutputDir("./tmp/"); OstreamManager clout(std::cout,"main"); const Vector coarseOrigin {0.0, 0.0}; const Vector coarseExtend {lx, ly}; IndicatorCuboid2D coarseCuboid(coarseExtend, coarseOrigin); Grid2D coarseGrid( coarseCuboid, RelaxationTime(tau), N, PhysCharacteristics); const Vector domainOrigin = coarseGrid.getSuperGeometry().getStatistics().getMinPhysR(0); const Vector domainExtend = coarseGrid.getSuperGeometry().getStatistics().getPhysExtend(0); prepareGeometry(coarseGrid, domainOrigin, domainExtend); const auto coarseDeltaX = coarseGrid.getConverter().getPhysDeltaX(); const Vector fineOutflowExtend {1*cylinderD, domainExtend[1]}; const Vector fineOutflowOrigin {domainExtend[0]-1*cylinderD, 0}; auto& fineOutflowGrid = coarseGrid.refine(fineOutflowOrigin, fineOutflowExtend, false); prepareGeometry(fineOutflowGrid, domainOrigin, domainExtend); { const Vector origin = fineOutflowGrid.getOrigin(); const Vector extend = fineOutflowGrid.getExtend(); const Vector extendY = {0,extend[1]}; coarseGrid.addFineCoupling(fineOutflowGrid, origin, extendY); coarseGrid.addCoarseCoupling(fineOutflowGrid, origin + Vector {coarseDeltaX,0}, extendY); IndicatorCuboid2D refined(extend, origin + Vector {2*coarseDeltaX,0}); coarseGrid.getSuperGeometry().reset(refined); } const Vector fineOutflowExtend2 {0.5*cylinderD, domainExtend[1]}; const Vector fineOutflowOrigin2 {domainExtend[0]-0.5*cylinderD, 0}; auto& fineOutflowGrid2 = fineOutflowGrid.refine(fineOutflowOrigin2, fineOutflowExtend2, false); prepareGeometry(fineOutflowGrid2, domainOrigin, domainExtend); { const Vector origin = fineOutflowGrid2.getOrigin(); const Vector extend = fineOutflowGrid2.getExtend(); const Vector extendY = {0,extend[1]}; fineOutflowGrid.addFineCoupling(fineOutflowGrid2, origin, extendY); fineOutflowGrid.addCoarseCoupling(fineOutflowGrid2, origin + Vector {coarseDeltaX,0}, extendY); IndicatorCuboid2D refined(extend, origin + Vector {coarseDeltaX,0}); fineOutflowGrid.getSuperGeometry().reset(refined); } prepareLattice(coarseGrid); prepareLattice(fineOutflowGrid); prepareLattice(fineOutflowGrid2); clout << "Total number of active cells: " << coarseGrid.getActiveVoxelN() << endl; clout << "Starting simulation..." << endl; const int statIter = coarseGrid.getConverter().getLatticeTime(0.5); Timer timer( coarseGrid.getConverter().getLatticeTime(maxPhysT), coarseGrid.getSuperGeometry().getStatistics().getNvoxel()); timer.start(); for (int iT = 0; iT <= coarseGrid.getConverter().getLatticeTime(maxPhysT); ++iT) { setBoundaryValues(coarseGrid, iT); coarseGrid.collideAndStream(); if (iT == 0 || iT%statIter == 0) { timer.update(iT); timer.printStep(); getResults("level0_", coarseGrid, iT); getResults("level1_outflow_", fineOutflowGrid, iT); getResults("level2_outflow_", fineOutflowGrid2, iT); takeMeasurements(coarseGrid); } } timer.stop(); timer.printSummary(); }