/* Lattice Boltzmann sample, written in C++, using the OpenLB * library * * Copyright (C) 2007, 2012 Jonas Latt, Mathias J. Krause * Vojtech Cvrcek, Peter Weisbrod * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "olb2D.h" #ifndef OLB_PRECOMPILED #include "olb2D.hh" #endif #include using namespace olb; using namespace olb::descriptors; typedef double T; #define DESCRIPTOR D2Q9Descriptor const T lx = 4.0; // length of the channel const T ly = 1.0; // height of the channel const int N = 50; // resolution of the model const T Re = 100.; // Reynolds number const T baseTau = 0.8; // Relaxation time of coarsest grid const T maxPhysT = 60.; // max. simulation time in s, SI unit const T physInterval = 0.25; // interval for the convergence check in s const T residuum = 1e-5; // residuum for the convergence check void prepareGeometry(Grid2D& grid) { OstreamManager clout(std::cout,"prepareGeometry"); clout << "Prepare Geometry ..." << std::endl; auto& converter = grid.getConverter(); auto& sGeometry = grid.getSuperGeometry(); sGeometry.rename(0,1); const T physSpacing = converter.getPhysDeltaX(); // Set material number for bounce back boundaries { const Vector wallExtend {lx+physSpacing, physSpacing/2}; const Vector wallOrigin {-physSpacing/4, -physSpacing/4}; IndicatorCuboid2D lowerWall(wallExtend, wallOrigin); sGeometry.rename(1,2,lowerWall); IndicatorCuboid2D upperWall(wallExtend, wallOrigin + Vector {0,ly}); sGeometry.rename(1,2,upperWall); } // Set material number for inflow and outflow { const Vector extend { physSpacing/2, ly}; const Vector origin {-physSpacing/4, -physSpacing/4}; IndicatorCuboid2D inflow(extend, origin); sGeometry.rename(1,3,inflow); IndicatorCuboid2D outflow(extend, origin + Vector {lx,0}); sGeometry.rename(1,4,outflow); } sGeometry.clean(); sGeometry.innerClean(); sGeometry.checkForErrors(); sGeometry.print(); clout << "Prepare Geometry ... OK" << std::endl; } void prepareLattice(Grid2D& grid, Dynamics& bulkDynamics, sOnLatticeBoundaryCondition2D& sBoundaryCondition) { OstreamManager clout(std::cout,"prepareLattice"); clout << "Prepare lattice ..." << std::endl; auto& converter = grid.getConverter(); auto& sGeometry = grid.getSuperGeometry(); auto& sLattice = grid.getSuperLattice(); const T omega = converter.getLatticeRelaxationFrequency(); sLattice.defineDynamics(sGeometry, 0, &instances::getNoDynamics()); sLattice.defineDynamics(sGeometry, 1, &bulkDynamics); // bulk sLattice.defineDynamics(sGeometry, 2, &instances::getBounceBack()); sLattice.defineDynamics(sGeometry, 3, &bulkDynamics); // inflow sLattice.defineDynamics(sGeometry, 4, &bulkDynamics); // outflow sBoundaryCondition.addVelocityBoundary(sGeometry, 3, omega); sBoundaryCondition.addVelocityBoundary(sGeometry, 4, omega); const T Lx = converter.getLatticeLength(lx); const T Ly = converter.getLatticeLength(ly); const T p0 = 8.*converter.getLatticeViscosity()*converter.getCharLatticeVelocity()*Lx/(Ly*Ly); AnalyticalLinear2D rho(-p0/lx*DESCRIPTOR::invCs2, 0, p0*DESCRIPTOR::invCs2+1); const T maxVelocity = converter.getCharLatticeVelocity(); const T radius = ly/2; std::vector axisPoint{0, ly/2}; std::vector axisDirection{1, 0}; Poiseuille2D u(axisPoint, axisDirection, maxVelocity, radius); sLattice.defineRhoU(sGeometry, 1, rho, u); sLattice.iniEquilibrium(sGeometry, 1, rho, u); sLattice.defineRhoU(sGeometry, 2, rho, u); sLattice.iniEquilibrium(sGeometry, 2, rho, u); sLattice.defineRhoU(sGeometry, 3, rho, u); sLattice.iniEquilibrium(sGeometry, 3, rho, u); sLattice.defineRhoU(sGeometry, 4, rho, u); sLattice.iniEquilibrium(sGeometry, 4, rho, u); sLattice.initialize(); clout << "Prepare lattice ... OK" << std::endl; } void getResults(const std::string& prefix, Grid2D& grid, int iT, Timer& timer, bool hasConverged) { OstreamManager clout(std::cout,"getResults"); auto& converter = grid.getConverter(); auto& sLattice = grid.getSuperLattice(); auto& sGeometry = grid.getSuperGeometry(); SuperVTMwriter2D vtmWriter(prefix + "poiseuille2d"); SuperLatticePhysVelocity2D velocity(sLattice, converter); SuperLatticePhysPressure2D pressure(sLattice, converter); SuperLatticeGeometry2D geometry(sLattice, sGeometry); vtmWriter.addFunctor(geometry); vtmWriter.addFunctor(velocity); vtmWriter.addFunctor(pressure); const int statIter = converter.getLatticeTime(maxPhysT/10.); if (iT==0) { vtmWriter.createMasterFile(); } if (iT%100==0) { vtmWriter.write(iT); } if (iT%statIter==0 || hasConverged) { timer.update(iT); timer.printStep(); sLattice.getStatistics().print(iT,converter.getPhysTime(iT)); } } int main(int argc, char* argv[]) { olbInit(&argc, &argv); singleton::directories().setOutputDir("./tmp/"); OstreamManager clout(std::cout,"main"); const Vector coarseOrigin {0.0, 0.0}; const Vector coarseExtend {lx, ly}; IndicatorCuboid2D coarseCuboid(coarseExtend, coarseOrigin); Grid2D coarseGrid(coarseCuboid, N, baseTau, Re); prepareGeometry(coarseGrid); const Vector fineExtend {2.0, 0.5}; const Vector fineOrigin {1.0, (ly-fineExtend[1])/2}; auto& fineGrid = coarseGrid.refine(fineOrigin, fineExtend); prepareGeometry(fineGrid); auto refinedOverlap = fineGrid.getRefinedOverlap(); coarseGrid.getSuperGeometry().rename(1,0,*refinedOverlap); coarseGrid.getSuperGeometry().rename(2,0,*refinedOverlap); BGKdynamics coarseBulkDynamics( coarseGrid.getConverter().getLatticeRelaxationFrequency(), instances::getBulkMomenta()); sOnLatticeBoundaryCondition2D coarseSBoundaryCondition(coarseGrid.getSuperLattice()); createLocalBoundaryCondition2D(coarseSBoundaryCondition); prepareLattice(coarseGrid, coarseBulkDynamics, coarseSBoundaryCondition); BGKdynamics fineBulkDynamics( fineGrid.getConverter().getLatticeRelaxationFrequency(), instances::getBulkMomenta()); sOnLatticeBoundaryCondition2D fineSBoundaryCondition(fineGrid.getSuperLattice()); createLocalBoundaryCondition2D(fineSBoundaryCondition); prepareLattice(fineGrid, fineBulkDynamics, fineSBoundaryCondition); clout << "starting simulation..." << endl; Timer timer( coarseGrid.getConverter().getLatticeTime(maxPhysT), coarseGrid.getSuperGeometry().getStatistics().getNvoxel()); util::ValueTracer converge( fineGrid.getConverter().getLatticeTime(physInterval), residuum); timer.start(); for (int iT = 0; iT < coarseGrid.getConverter().getLatticeTime(maxPhysT); ++iT) { if (converge.hasConverged()) { clout << "Simulation converged." << endl; break; } coarseGrid.collideAndStream(); getResults( "coarse_", coarseGrid, iT, timer, converge.hasConverged()); getResults( "fine_", fineGrid, iT, timer, converge.hasConverged()); converge.takeValue(fineGrid.getSuperLattice().getStatistics().getAverageEnergy(), true); } timer.stop(); timer.printSummary(); }