/* * Lattice Boltzmann grid refinement sample, written in C++, * using the OpenLB library * * Copyright (C) 2019 Adrian Kummerländer * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "olb2D.h" #ifndef OLB_PRECOMPILED #include "olb2D.hh" #endif #include using namespace olb; typedef double T; #define DESCRIPTOR descriptors::D2Q9Descriptor const T lx = 4.0; // length of the channel const T ly = 1.0; // height of the channel const int N = 10; // resolution of the model const T Re = 10.; // Reynolds number const T uMax = 0.01; // Max lattice speed const T maxPhysT = 60.; // max. simulation time in s, SI unit const T physInterval = 0.25; // interval for the convergence check in s const T residuum = 1e-5; // residuum for the convergence check void prepareGeometry(Grid2D& grid) { OstreamManager clout(std::cout,"prepareGeometry"); clout << "Prepare Geometry ..." << std::endl; auto& converter = grid.getConverter(); auto& sGeometry = grid.getSuperGeometry(); sGeometry.rename(0,1); const T physSpacing = converter.getPhysDeltaX(); // Set material number for bounce back boundaries { const Vector wallExtend {lx+physSpacing, physSpacing/2}; const Vector wallOrigin {-physSpacing/4, -physSpacing/4}; IndicatorCuboid2D lowerWall(wallExtend, wallOrigin); sGeometry.rename(1,2,lowerWall); IndicatorCuboid2D upperWall(wallExtend, wallOrigin + Vector {0,ly}); sGeometry.rename(1,2,upperWall); } // Set material number for inflow and outflow { const Vector extend { physSpacing/2, ly}; const Vector origin {-physSpacing/4, -physSpacing/4}; IndicatorCuboid2D inflow(extend, origin); sGeometry.rename(1,3,inflow); IndicatorCuboid2D outflow(extend, origin + Vector {lx,0}); sGeometry.rename(1,4,outflow); } sGeometry.clean(); sGeometry.innerClean(); sGeometry.checkForErrors(); sGeometry.print(); clout << "Prepare Geometry ... OK" << std::endl; } void prepareLattice(Grid2D& grid) { OstreamManager clout(std::cout,"prepareLattice"); clout << "Prepare lattice ..." << std::endl; auto& converter = grid.getConverter(); auto& sGeometry = grid.getSuperGeometry(); auto& sLattice = grid.getSuperLattice(); Dynamics& bulkDynamics = grid.addDynamics( std::unique_ptr>( new BGKdynamics( grid.getConverter().getLatticeRelaxationFrequency(), instances::getBulkMomenta()))); sOnLatticeBoundaryCondition2D& sBoundaryCondition = grid.getOnLatticeBoundaryCondition(); createInterpBoundaryCondition2D(sBoundaryCondition); const T omega = converter.getLatticeRelaxationFrequency(); sLattice.defineDynamics(sGeometry, 0, &instances::getNoDynamics()); sLattice.defineDynamics(sGeometry, 1, &bulkDynamics); // bulk sLattice.defineDynamics(sGeometry, 2, &bulkDynamics); // walls sLattice.defineDynamics(sGeometry, 3, &bulkDynamics); // inflow sLattice.defineDynamics(sGeometry, 4, &bulkDynamics); // outflow sBoundaryCondition.addVelocityBoundary(sGeometry, 2, omega); // 0-velocity walls sBoundaryCondition.addVelocityBoundary(sGeometry, 3, omega); // velocity inflow sBoundaryCondition.addPressureBoundary(sGeometry, 4, omega); // pressure outflow const T Lx = converter.getLatticeLength(lx); const T Ly = converter.getLatticeLength(ly); const T p0 = 8.*converter.getLatticeViscosity()*converter.getCharLatticeVelocity()*Lx/(Ly*Ly); AnalyticalLinear2D rho(-p0/lx*DESCRIPTOR::invCs2, 0, p0*DESCRIPTOR::invCs2+1); const T maxVelocity = converter.getCharLatticeVelocity(); const T radius = ly/2; std::vector axisPoint{0, ly/2}; std::vector axisDirection{1, 0}; Poiseuille2D u(axisPoint, axisDirection, maxVelocity, radius); auto materials = sGeometry.getMaterialIndicator({1,2,3,4}); sLattice.defineRhoU(materials, rho, u); sLattice.iniEquilibrium(materials, rho, u); sLattice.initialize(); clout << "Prepare lattice ... OK" << std::endl; } void getResults(const std::string& prefix, Grid2D& grid, int iT, Timer& timer, bool hasConverged) { OstreamManager clout(std::cout,"getResults"); auto& converter = grid.getConverter(); auto& sLattice = grid.getSuperLattice(); auto& sGeometry = grid.getSuperGeometry(); SuperVTMwriter2D vtmWriter(prefix + "poiseuille2d"); SuperLatticePhysVelocity2D velocity(sLattice, converter); SuperLatticePhysPressure2D pressure(sLattice, converter); SuperLatticeGeometry2D geometry(sLattice, sGeometry); vtmWriter.addFunctor(geometry); vtmWriter.addFunctor(velocity); vtmWriter.addFunctor(pressure); const int statIter = converter.getLatticeTime(maxPhysT/10.); if (iT==0) { vtmWriter.createMasterFile(); } if (iT%100==0) { vtmWriter.write(iT); } if (iT%statIter==0 || hasConverged) { timer.update(iT); timer.printStep(); sLattice.getStatistics().print(iT,converter.getPhysTime(iT)); } } void getError(const std::string& prefix, Grid2D& grid) { OstreamManager clout(std::cout, prefix); auto& converter = grid.getConverter(); auto& sLattice = grid.getSuperLattice(); auto& sGeometry = grid.getSuperGeometry(); const T maxVelocity = converter.getCharPhysVelocity(); const T radius = ly/2; std::vector axisPoint{lx/2, ly/2}; std::vector axisDirection{1, 0}; Poiseuille2D uSol(axisPoint, axisDirection, maxVelocity, radius); const T Lx = converter.getLatticeLength(lx); const T Ly = converter.getLatticeLength(ly); T p0 = 8.*converter.getLatticeViscosity()*converter.getCharLatticeVelocity()*Lx/T(Ly*Ly); AnalyticalLinear2D pSol(-converter.getPhysPressure(p0)/lx, 0, converter.getPhysPressure(p0)); SuperLatticePhysVelocity2D u(sLattice, converter); SuperLatticePhysPressure2D p(sLattice, converter); auto fluid = sGeometry.getMaterialIndicator(1); int tmp[]= { }; T result[2]= { }; SuperRelativeErrorL2Norm2D velocityError(u, uSol, fluid); velocityError(result, tmp); clout << "velocity-L2-error(rel)=" << result[0] << std::endl; SuperRelativeErrorL2Norm2D pressureError(p, pSol, fluid); pressureError(result, tmp); clout << "pressure-L2-error(rel)=" << result[0] << std::endl; } int main(int argc, char* argv[]) { olbInit(&argc, &argv); singleton::directories().setOutputDir("./tmp/"); OstreamManager clout(std::cout,"main"); const Vector coarseOrigin {0.0, 0.0}; const Vector coarseExtend {lx/2, ly}; IndicatorCuboid2D coarseCuboid(coarseExtend, coarseOrigin); Grid2D coarseGrid(coarseCuboid, LatticeVelocity(uMax), N, Re); prepareGeometry(coarseGrid); const T coarseDeltaX = coarseGrid.getConverter().getPhysDeltaX(); const Vector fineExtend {lx/2+coarseDeltaX, ly}; const Vector fineOrigin {lx/2-coarseDeltaX, 0.0}; auto& fineGrid = coarseGrid.refine(fineOrigin, fineExtend, false); { const Vector origin = fineGrid.getOrigin(); const Vector extend = fineGrid.getExtend(); const Vector extendY = {0,extend[1]}; coarseGrid.addFineCoupling(fineGrid, origin, extendY); coarseGrid.addCoarseCoupling(fineGrid, origin + Vector {coarseDeltaX,0}, extendY); } prepareGeometry(fineGrid); prepareLattice(coarseGrid); prepareLattice(fineGrid); clout << "Total number of active cells: " << coarseGrid.getActiveVoxelN() << endl; clout << "starting simulation..." << endl; Timer timer( coarseGrid.getConverter().getLatticeTime(maxPhysT), coarseGrid.getSuperGeometry().getStatistics().getNvoxel()); util::ValueTracer converge( fineGrid.getConverter().getLatticeTime(physInterval), residuum); timer.start(); for (int iT = 0; iT < coarseGrid.getConverter().getLatticeTime(maxPhysT); ++iT) { if (converge.hasConverged()) { clout << "Simulation converged." << endl; break; } coarseGrid.collideAndStream(); getResults( "coarse_", coarseGrid, iT, timer, converge.hasConverged()); getResults( "fine_", fineGrid, iT, timer, converge.hasConverged()); converge.takeValue(fineGrid.getSuperLattice().getStatistics().getAverageEnergy(), true); } getError("coarse", coarseGrid); getError("fine", fineGrid); timer.stop(); timer.printSummary(); }