/* Lattice Boltzmann sample, written in C++, using the OpenLB * library * * Copyright (C) 2007, 2012 Jonas Latt, Mathias J. Krause * Vojtech Cvrcek, Peter Weisbrod * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "olb2D.h" #ifndef OLB_PRECOMPILED #include "olb2D.hh" #endif #include using namespace olb; using namespace olb::descriptors; typedef double T; #define DESCRIPTOR D2Q9Descriptor const T lx = 8.0; // length of the channel const T ly = 2.0; // height of the channel const int N = 50; // resolution of the model const T Re = 200.; // Reynolds number const T baseTau = 0.8; // Relaxation time of coarsest grid const T maxPhysT = 60.; // max. simulation time in s, SI unit const T physInterval = 0.25; // interval for the convergence check in s const T residuum = 1e-5; // residuum for the convergence check void prepareGeometry(UnitConverter const& converter, SuperGeometry2D& superGeometry) { OstreamManager clout(std::cout,"prepareGeometry"); clout << "Prepare Geometry ..." << std::endl; superGeometry.rename(0,1); const T physSpacing = converter.getPhysDeltaX(); // Set material number for bounce back boundaries { const Vector wallExtend {lx+physSpacing, physSpacing/2}; const Vector wallOrigin {-physSpacing/4, -physSpacing/4}; IndicatorCuboid2D lowerWall(wallExtend, wallOrigin); superGeometry.rename(1,2,lowerWall); IndicatorCuboid2D upperWall(wallExtend, wallOrigin + Vector {0,ly}); superGeometry.rename(1,2,upperWall); } // Set material number for inflow and outflow { const Vector extend { physSpacing/2, ly}; const Vector origin {-physSpacing/4, -physSpacing/4}; IndicatorCuboid2D inflow(extend, origin); superGeometry.rename(1,3,inflow); IndicatorCuboid2D outflow(extend, origin + Vector {lx,0}); superGeometry.rename(1,4,outflow); } // Set material number for vertically centered obstacle { const Vector origin {1.25, ly/2}; IndicatorCircle2D obstacle(origin, 0.1); superGeometry.rename(1,2,obstacle); } superGeometry.clean(); superGeometry.innerClean(); superGeometry.checkForErrors(); superGeometry.print(); clout << "Prepare Geometry ... OK" << std::endl; } void prepareLattice(UnitConverter const& converter, SuperLattice2D& sLattice, Dynamics& bulkDynamics, sOnLatticeBoundaryCondition2D& sBoundaryCondition, SuperGeometry2D& superGeometry) { OstreamManager clout(std::cout,"prepareLattice"); clout << "Prepare lattice ..." << std::endl; const T omega = converter.getLatticeRelaxationFrequency(); sLattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics()); sLattice.defineDynamics(superGeometry, 1, &bulkDynamics); // bulk sLattice.defineDynamics(superGeometry, 2, &instances::getBounceBack()); sLattice.defineDynamics(superGeometry, 3, &bulkDynamics); // inflow sLattice.defineDynamics(superGeometry, 4, &bulkDynamics); // outflow sBoundaryCondition.addVelocityBoundary(superGeometry, 3, omega); sBoundaryCondition.addVelocityBoundary(superGeometry, 4, omega); const T Lx = converter.getLatticeLength(lx); const T Ly = converter.getLatticeLength(ly); const T p0 = 8.*converter.getLatticeViscosity()*converter.getCharLatticeVelocity()*Lx/(Ly*Ly); AnalyticalLinear2D rho(-p0/lx*DESCRIPTOR::invCs2, 0, p0*DESCRIPTOR::invCs2+1); const T maxVelocity = converter.getCharLatticeVelocity(); const T radius = ly/2; std::vector axisPoint{0, ly/2}; std::vector axisDirection{1, 0}; Poiseuille2D u(axisPoint, axisDirection, maxVelocity, radius); sLattice.defineRhoU(superGeometry, 1, rho, u); sLattice.iniEquilibrium(superGeometry, 1, rho, u); sLattice.defineRhoU(superGeometry, 2, rho, u); sLattice.iniEquilibrium(superGeometry, 2, rho, u); sLattice.defineRhoU(superGeometry, 3, rho, u); sLattice.iniEquilibrium(superGeometry, 3, rho, u); sLattice.defineRhoU(superGeometry, 4, rho, u); sLattice.iniEquilibrium(superGeometry, 4, rho, u); sLattice.initialize(); clout << "Prepare lattice ... OK" << std::endl; } void getResults(const std::string& prefix, SuperLattice2D& sLattice, UnitConverter const& converter, int iT, SuperGeometry2D& superGeometry, Timer& timer, bool hasConverged) { OstreamManager clout(std::cout,"getResults"); SuperVTMwriter2D vtmWriter(prefix + "poiseuille2d"); SuperLatticePhysVelocity2D velocity(sLattice, converter); SuperLatticePhysPressure2D pressure(sLattice, converter); SuperLatticeGeometry2D geometry( sLattice, superGeometry ); vtmWriter.addFunctor(geometry); vtmWriter.addFunctor(velocity); vtmWriter.addFunctor(pressure); const int statIter = converter.getLatticeTime(maxPhysT/10.); if (iT==0) { vtmWriter.createMasterFile(); } if (iT%20==0) { vtmWriter.write(iT); } if (iT%statIter==0 || hasConverged) { timer.update(iT); timer.printStep(); sLattice.getStatistics().print(iT,converter.getPhysTime(iT)); } } int main(int argc, char* argv[]) { olbInit(&argc, &argv); singleton::directories().setOutputDir("./tmp/"); OstreamManager clout(std::cout,"main"); const Vector coarseOrigin {0.0, 0.0}; const Vector coarseExtend {lx, ly}; IndicatorCuboid2D coarseCuboid(coarseExtend, coarseOrigin); auto coarseGrid = Grid2D::make(coarseCuboid, N, baseTau, Re); prepareGeometry(coarseGrid->getConverter(), coarseGrid->getSuperGeometry()); const Vector fineExtend {3.0, 1.5}; const Vector fineOrigin {0.8, (ly-fineExtend[1])/2}; auto fineGrid = &coarseGrid->refine(fineOrigin, fineExtend); prepareGeometry(fineGrid->getConverter(), fineGrid->getSuperGeometry()); auto refinedOverlap = fineGrid->getRefinedOverlap(); coarseGrid->getSuperGeometry().rename(1,0,*refinedOverlap); coarseGrid->getSuperGeometry().rename(2,0,*refinedOverlap); BGKdynamics coarseBulkDynamics( coarseGrid->getConverter().getLatticeRelaxationFrequency(), instances::getBulkMomenta()); sOnLatticeBoundaryCondition2D coarseSBoundaryCondition(coarseGrid->getSuperLattice()); createLocalBoundaryCondition2D(coarseSBoundaryCondition); prepareLattice( coarseGrid->getConverter(), coarseGrid->getSuperLattice(), coarseBulkDynamics, coarseSBoundaryCondition, coarseGrid->getSuperGeometry()); BGKdynamics fineBulkDynamics( fineGrid->getConverter().getLatticeRelaxationFrequency(), instances::getBulkMomenta()); sOnLatticeBoundaryCondition2D fineSBoundaryCondition(fineGrid->getSuperLattice()); createLocalBoundaryCondition2D(fineSBoundaryCondition); const Vector fineExtend2 {0.6, 0.4}; const Vector fineOrigin2 {1.05, (ly-fineExtend2[1])/2}; auto fineGrid2 = &fineGrid->refine(fineOrigin2, fineExtend2); prepareGeometry(fineGrid2->getConverter(), fineGrid2->getSuperGeometry()); auto refinedOverlap2 = fineGrid2->getRefinedOverlap(); fineGrid->getSuperGeometry().rename(1,0,*refinedOverlap2); fineGrid->getSuperGeometry().rename(2,0,*refinedOverlap2); prepareLattice( fineGrid->getConverter(), fineGrid->getSuperLattice(), fineBulkDynamics, fineSBoundaryCondition, fineGrid->getSuperGeometry()); BGKdynamics fineBulkDynamics2( fineGrid2->getConverter().getLatticeRelaxationFrequency(), instances::getBulkMomenta()); sOnLatticeBoundaryCondition2D fineSBoundaryCondition2(fineGrid2->getSuperLattice()); createLocalBoundaryCondition2D(fineSBoundaryCondition2); prepareLattice( fineGrid2->getConverter(), fineGrid2->getSuperLattice(), fineBulkDynamics2, fineSBoundaryCondition2, fineGrid2->getSuperGeometry()); clout << "starting simulation..." << endl; Timer timer( coarseGrid->getConverter().getLatticeTime(maxPhysT), coarseGrid->getSuperGeometry().getStatistics().getNvoxel()); util::ValueTracer converge( fineGrid2->getConverter().getLatticeTime(physInterval), residuum); timer.start(); for (int iT = 0; iT < coarseGrid->getConverter().getLatticeTime(maxPhysT); ++iT) { if (converge.hasConverged()) { clout << "Simulation converged." << endl; break; } coarseGrid->collideAndStream(); getResults( "coarse_", coarseGrid->getSuperLattice(), coarseGrid->getConverter(), iT, coarseGrid->getSuperGeometry(), timer, converge.hasConverged()); getResults( "fine_", fineGrid->getSuperLattice(), fineGrid->getConverter(), iT, fineGrid->getSuperGeometry(), timer, converge.hasConverged()); getResults( "fine2_", fineGrid2->getSuperLattice(), fineGrid2->getConverter(), iT, fineGrid2->getSuperGeometry(), timer, converge.hasConverged()); converge.takeValue(fineGrid2->getSuperLattice().getStatistics().getAverageEnergy(), true); } timer.stop(); timer.printSummary(); }