/* Lattice Boltzmann sample, written in C++, using the OpenLB * library * * Copyright (C) 2018 Marc Haußmann, Mathias J. Krause * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /* poiseuille3d.cpp: * This example examines a 3D Poseuille flow * It illustrates the computation of error norms. */ #include "olb3D.h" #include "olb3D.hh" #include #include #include #include #include using namespace olb; using namespace olb::descriptors; using namespace olb::graphics; using namespace std; typedef double T; //#define MRT #ifdef MRT #define DESCRIPTOR ForcedMRTD3Q19Descriptor #else #define DESCRIPTOR D3Q19 #endif typedef enum {forced, nonForced} FlowType; typedef enum {bounceBack, local, interpolated, bouzidi, freeSlip, partialSlip} BoundaryType; // Parameters for the simulation setup FlowType flowType = forced; BoundaryType boundaryType = bouzidi; const T length = 2.; // length of the pie const T diameter = 1.; // diameter of the pipe int N = 21; // resolution of the model const T physU = 1.; // physical velocity const T Re = 10.; // Reynolds number const T physRho = 1.; // physical density const T tau = 0.8; // lattice relaxation time const T maxPhysT = 20.; // max. simulation time in s, SI unit const T residuum = 1e-5; // residuum for the convergence check const T tuner = 0.97; // for partialSlip only: 0->bounceBack, 1->freeSlip // Scaled Parameters const T radius = diameter/2.; // radius of the pipe const T physInterval = 0.0125*maxPhysT; // interval for the convergence check in s // Stores geometry information in form of material numbers void prepareGeometry( UnitConverter const& converter, SuperGeometry3D& superGeometry ) { OstreamManager clout(std::cout, "prepareGeometry"); clout << "Prepare Geometry ..." << std::endl; Vector center0(-converter.getPhysDeltaX() * 0.2, radius, radius); Vector center1(length, radius, radius); if (flowType == forced) { center0[0] -= 3.*converter.getPhysDeltaX(); center1[0] += 3.*converter.getPhysDeltaX(); } IndicatorCylinder3D pipe(center0, center1, radius); superGeometry.rename(0, 2); superGeometry.rename(2, 1, pipe); if (flowType == nonForced) { Vector origin(0, radius, radius); Vector extend = origin; // Set material number for inflow origin[0] = -converter.getPhysDeltaX() * 2; extend[0] = converter.getPhysDeltaX() * 2; IndicatorCylinder3D inflow(origin, extend, radius); superGeometry.rename(2, 3, 1, inflow); // Set material number for outflow origin[0] = length - 2 * converter.getPhysDeltaX(); extend[0] = length + 2 * converter.getPhysDeltaX(); IndicatorCylinder3D outflow(extend, origin, radius); superGeometry.rename(2, 4, 1, outflow); } // Removes all not needed boundary voxels outside the surface superGeometry.clean(); // Removes all not needed boundary voxels inside the surface superGeometry.innerClean(); superGeometry.checkForErrors(); superGeometry.print(); clout << "Prepare Geometry ... OK" << std::endl; } // Set up the geometry of the simulation void prepareLattice(SuperLattice3D& sLattice, UnitConverterconst& converter, Dynamics& bulkDynamics, sOnLatticeBoundaryCondition3D& onBc, sOffLatticeBoundaryCondition3D& offBc, SuperGeometry3D& superGeometry) { OstreamManager clout( std::cout,"prepareLattice" ); clout << "Prepare Lattice ..." << std::endl; const T omega = converter.getLatticeRelaxationFrequency(); // Material=0 -->do nothing sLattice.defineDynamics( superGeometry, 0, &instances::getNoDynamics() ); // Material=1 -->bulk dynamics sLattice.defineDynamics( superGeometry, 1, &bulkDynamics ); Vector center0(0, radius, radius); Vector center1(length, radius, radius); std::vector origin = { length, radius, radius}; std::vector axis = { 1, 0, 0 }; CirclePoiseuille3D poiseuilleU(origin, axis, converter.getCharLatticeVelocity(), radius); if (boundaryType == bounceBack) { sLattice.defineDynamics( superGeometry, 2, &instances::getBounceBack() ); } else if (boundaryType == freeSlip) { sLattice.defineDynamics(superGeometry, 2, &instances::getNoDynamics()); onBc.addSlipBoundary( superGeometry, 2 ); } else if (boundaryType == partialSlip) { sLattice.defineDynamics(superGeometry, 2, &instances::getNoDynamics()); onBc.addPartialSlipBoundary(tuner, superGeometry, 2 ); } else if (boundaryType == bouzidi) { sLattice.defineDynamics(superGeometry, 2, &instances::getNoDynamics() ); center0[0] -= 0.5*converter.getPhysDeltaX(); center1[0] += 0.5*converter.getPhysDeltaX(); if (flowType == forced) { center0[0] -= 3.*converter.getPhysDeltaX(); center1[0] += 3.*converter.getPhysDeltaX(); } IndicatorCylinder3D pipe(center0, center1, radius); offBc.addZeroVelocityBoundary(superGeometry, 2, pipe); } else { sLattice.defineDynamics( superGeometry, 2, &bulkDynamics ); onBc.addVelocityBoundary( superGeometry, 2, omega ); } if (flowType == nonForced) { if (boundaryType == bouzidi) { sLattice.defineDynamics(superGeometry, 3, &instances::getNoDynamics() ); IndicatorCylinder3D pipe(center0, center1, radius); offBc.addVelocityBoundary(superGeometry, 3, pipe); offBc.defineU(superGeometry,3,poiseuilleU); } else { // Material=3 -->bulk dynamics sLattice.defineDynamics( superGeometry, 3, &bulkDynamics ); onBc.addVelocityBoundary( superGeometry, 3, omega ); } // Material=4 -->bulk dynamics sLattice.defineDynamics( superGeometry, 4, &bulkDynamics ); onBc.addPressureBoundary( superGeometry, 4, omega ); } if (flowType == forced) { // Initial conditions T D = converter.getLatticeLength(diameter); std::vector poiseuilleForce(3, T()); poiseuilleForce[0] = 4. * converter.getLatticeViscosity() * converter.getCharLatticeVelocity() / (D * D / 4. ); AnalyticalConst3D force( poiseuilleForce ); // Initialize force sLattice.defineField(superGeometry, 1, force); sLattice.defineField(superGeometry, 2, force ); AnalyticalConst3D rhoF(1); sLattice.defineRhoU(superGeometry, 1, rhoF, poiseuilleU); sLattice.iniEquilibrium(superGeometry, 1, rhoF, poiseuilleU); sLattice.defineRhoU(superGeometry, 2, rhoF, poiseuilleU); sLattice.iniEquilibrium(superGeometry, 2, rhoF, poiseuilleU); } else { // Initial conditions T p0 = 4. * converter.getPhysViscosity() * converter.getCharPhysVelocity() * length / (radius * radius); p0 = converter.getLatticePressure(p0); AnalyticalLinear3D rho(-p0 / length * descriptors::invCs2(), 0, 0, p0 * descriptors::invCs2() + 1); std::vector velocity(3, T()); AnalyticalConst3D uF(velocity); // Initialize all values of distribution functions to their local equilibrium sLattice.defineRhoU(superGeometry, 0, rho, uF); sLattice.iniEquilibrium(superGeometry, 0, rho, uF); sLattice.defineRhoU(superGeometry, 1, rho, poiseuilleU); sLattice.iniEquilibrium(superGeometry, 1, rho, poiseuilleU); sLattice.defineRhoU(superGeometry, 2, rho, poiseuilleU); sLattice.iniEquilibrium(superGeometry, 2, rho, poiseuilleU); sLattice.defineRhoU(superGeometry, 3, rho, poiseuilleU); sLattice.iniEquilibrium(superGeometry, 3, rho, poiseuilleU); sLattice.defineRhoU(superGeometry, 4, rho, poiseuilleU); sLattice.iniEquilibrium(superGeometry, 4, rho, poiseuilleU); } // Make the lattice ready for simulation sLattice.initialize(); clout << "Prepare Lattice ... OK" << std::endl; } // Compute error norms void error( SuperGeometry3D& superGeometry, SuperLattice3D& sLattice, UnitConverter const& converter, Dynamics& bulkDynamics, SuperLatticePhysWallShearStress3D& wss) { OstreamManager clout( std::cout,"error" ); int tmp[]= { }; T result[2]= { }; // velocity error const T maxVelocity = converter.getCharPhysVelocity(); std::vector axisPoint = {length, radius, radius}; std::vector axisDirection = { 1, 0, 0 }; CirclePoiseuille3D uSol(axisPoint, axisDirection, maxVelocity, radius); SuperLatticePhysVelocity3D u( sLattice,converter ); auto indicatorF = superGeometry.getMaterialIndicator(1); SuperAbsoluteErrorL1Norm3D absVelocityErrorNormL1(u, uSol, indicatorF); absVelocityErrorNormL1(result, tmp); clout << "velocity-L1-error(abs)=" << result[0]; SuperRelativeErrorL1Norm3D relVelocityErrorNormL1(u, uSol, indicatorF); relVelocityErrorNormL1(result, tmp); clout << "; velocity-L1-error(rel)=" << result[0] << std::endl; SuperAbsoluteErrorL2Norm3D absVelocityErrorNormL2(u, uSol, indicatorF); absVelocityErrorNormL2(result, tmp); clout << "velocity-L2-error(abs)=" << result[0]; SuperRelativeErrorL2Norm3D relVelocityErrorNormL2(u, uSol, indicatorF); relVelocityErrorNormL2(result, tmp); clout << "; velocity-L2-error(rel)=" << result[0] << std::endl; SuperAbsoluteErrorLinfNorm3D absVelocityErrorNormLinf(u, uSol, indicatorF); absVelocityErrorNormLinf(result, tmp); clout << "velocity-Linf-error(abs)=" << result[0]; SuperRelativeErrorLinfNorm3D relVelocityErrorNormLinf(u, uSol, indicatorF); relVelocityErrorNormLinf(result, tmp); clout << "; velocity-Linf-error(rel)=" << result[0] << std::endl; // strainRate error CirclePoiseuilleStrainRate3D sSol( converter, radius ); SuperLatticePhysStrainRate3D s( sLattice,converter ); SuperAbsoluteErrorL1Norm3D absStrainRateErrorNormL1(s, sSol, indicatorF); absStrainRateErrorNormL1(result, tmp); clout << "strainRate-L1-error(abs)=" << result[0]; SuperRelativeErrorL1Norm3D relStrainRateErrorNormL1(s, sSol, indicatorF); relStrainRateErrorNormL1(result, tmp); clout << "; strainRate-L1-error(rel)=" << result[0] << std::endl; SuperAbsoluteErrorL2Norm3D absStrainRateErrorNormL2(s, sSol, indicatorF); absStrainRateErrorNormL2(result, tmp); clout << "strainRate-L2-error(abs)=" << result[0]; SuperRelativeErrorL2Norm3D relStrainRateErrorNormL2(s, sSol, indicatorF); relStrainRateErrorNormL2(result, tmp); clout << "; strainRate-L2-error(rel)=" << result[0] << std::endl; SuperAbsoluteErrorLinfNorm3D absStrainRateErrorNormLinf(s, sSol, indicatorF); absStrainRateErrorNormLinf(result, tmp); clout << "strainRate-Linf-error(abs)=" << result[0]; SuperRelativeErrorLinfNorm3D relStrainRateErrorNormLinf(s, sSol, indicatorF); relStrainRateErrorNormLinf(result, tmp); clout << "; strainRate-Linf-error(rel)=" << result[0] << std::endl; // wallShearStress error AnalyticalConst3D wssSol(4. * converter.getPhysViscosity() * converter.getPhysDensity() * maxVelocity / diameter); SuperLatticeFfromAnalyticalF3D wssSolLattice (wssSol, sLattice); auto indicatorB = superGeometry.getMaterialIndicator(2); SuperAbsoluteErrorL1Norm3D absWallShearStressErrorNormL1(wss, wssSol, indicatorB); absWallShearStressErrorNormL1(result, tmp); clout << "wss-L1-error(abs)=" << result[0]; SuperRelativeErrorL1Norm3D relWallShearStressErrorNormL1(wss, wssSol, indicatorB); relWallShearStressErrorNormL1(result, tmp); clout << "; wss-L1-error(rel)=" << result[0] << std::endl; SuperAbsoluteErrorL2Norm3D absWallShearStressErrorNormL2(wss, wssSol, indicatorB); absWallShearStressErrorNormL2(result, tmp); clout << "wss-L2-error(abs)=" << result[0]; SuperRelativeErrorL2Norm3D relWallShearStressErrorNormL2(wss, wssSol, indicatorB); relWallShearStressErrorNormL2(result, tmp); clout << "; wss-L2-error(rel)=" << result[0] << std::endl; SuperAbsoluteErrorLinfNorm3D absWallShearStressErrorNormLinf(wss, wssSol, indicatorB); absWallShearStressErrorNormLinf(result, tmp); clout << "wss-Linf-error(abs)=" << result[0]; SuperRelativeErrorLinfNorm3D relWallShearStressErrorNormLinf(wss, wssSol, indicatorB); relWallShearStressErrorNormLinf(result, tmp); clout << "; wss-Linf-error(rel)=" << result[0] << std::endl; if (flowType == nonForced) { // pressure error T p0 = 4. * converter.getPhysViscosity() * maxVelocity * length / (radius * radius); AnalyticalLinear3D pressureSol(-p0 / length, 0, 0, p0); SuperLatticePhysPressure3D pressure(sLattice, converter); SuperAbsoluteErrorL1Norm3D absPressureErrorNormL1(pressure, pressureSol, indicatorF); absPressureErrorNormL1(result, tmp); clout << "pressure-L1-error(abs)=" << result[0]; SuperRelativeErrorL1Norm3D relPressureErrorNormL1(pressure, pressureSol, indicatorF); relPressureErrorNormL1(result, tmp); clout << "; pressure-L1-error(rel)=" << result[0] << std::endl; SuperAbsoluteErrorL2Norm3D absPressureErrorNormL2(pressure, pressureSol, indicatorF); absPressureErrorNormL2(result, tmp); clout << "pressure-L2-error(abs)=" << result[0]; SuperRelativeErrorL2Norm3D relPressureErrorNormL2(pressure, pressureSol, indicatorF); relPressureErrorNormL2(result, tmp); clout << "; pressure-L2-error(rel)=" << result[0] << std::endl; SuperAbsoluteErrorLinfNorm3D absPressureErrorNormLinf(pressure, pressureSol, indicatorF); absPressureErrorNormLinf(result, tmp); clout << "pressure-Linf-error(abs)=" << result[0]; SuperRelativeErrorLinfNorm3D relPressureErrorNormLinf(pressure, pressureSol, indicatorF); relPressureErrorNormLinf(result, tmp); clout << "; pressure-Linf-error(rel)=" << result[0] << std::endl; } } // Output to console and files void getResults( SuperLattice3D& sLattice, Dynamics& bulkDynamics, UnitConverter const& converter, int iT, SuperGeometry3D& superGeometry, Timer& timer, bool hasConverged, SuperLatticePhysWallShearStress3D& wss) { OstreamManager clout( std::cout,"getResults" ); SuperVTMwriter3D vtmWriter( "poiseuille3d" ); SuperLatticePhysVelocity3D velocity( sLattice, converter ); SuperLatticePhysPressure3D pressure( sLattice, converter ); vtmWriter.addFunctor( velocity ); vtmWriter.addFunctor( pressure ); vtmWriter.addFunctor( wss ); const int vtmIter = converter.getLatticeTime( maxPhysT/20. ); const int statIter = converter.getLatticeTime( maxPhysT/20. ); if ( iT==0 ) { // Writes the geometry, cuboid no. and rank no. as vti file for visualization SuperLatticeGeometry3D geometry( sLattice, superGeometry ); SuperLatticeCuboid3D cuboid( sLattice ); SuperLatticeRank3D rank( sLattice ); vtmWriter.write( geometry ); vtmWriter.write( cuboid ); vtmWriter.write( rank ); vtmWriter.createMasterFile(); } // Writes the vtm files and profile text file if ( iT%vtmIter==0 || hasConverged ) { vtmWriter.write( iT ); SuperEuklidNorm3D normVel( velocity ); BlockReduction3D2D planeReduction( normVel, {0,0,1}, 600, BlockDataSyncMode::ReduceOnly ); // write output as JPEG heatmap::write(planeReduction, iT); } if ( hasConverged ) { Gnuplot gplot( "centerVelocity" ); T D = converter.getLatticeLength( diameter ); for ( int iY=0; iY<=D; ++iY ) { T dx = 1. / T(converter.getResolution()); T point[3]= {T(),T(),T()}; point[0] = length/2.; point[1] = ( T )converter.getPhysLength(iY); point[2] = ( T )radius; const T maxVelocity = converter.getCharPhysVelocity(); std::vector axisPoint = {length, radius, radius}; std::vector axisDirection = { 1, 0, 0 }; CirclePoiseuille3D uSol(axisPoint, axisDirection, maxVelocity, radius); T analytical[3] = {T(),T(),T()}; uSol( analytical,point ); SuperLatticePhysVelocity3D velocity( sLattice, converter ); AnalyticalFfromSuperF3D intpolateVelocity( velocity, true, 1 ); T numerical[3] = {T(),T(),T()}; intpolateVelocity( numerical,point ); gplot.setData( iY*dx, {analytical[0],numerical[0]}, {"analytical","numerical"} ); } // Create PNG file gplot.writePNG(); } // Writes output on the console if ( iT%statIter==0 || hasConverged ) { // Timer console output timer.update( iT ); timer.printStep(); // Lattice statistics console output sLattice.getStatistics().print( iT,converter.getPhysTime( iT ) ); // Error norms error( superGeometry, sLattice, converter, bulkDynamics, wss ); } } int main( int argc, char* argv[] ) { // === 1st Step: Initialization === olbInit( &argc, &argv ); singleton::directories().setOutputDir( "./tmp/" ); OstreamManager clout( std::cout,"main" ); if (argc > 1) { if (argv[1][0]=='-'&&argv[1][1]=='h') { OstreamManager clout( std::cout,"help" ); clout<<"Usage: program [Resolution] [FlowType] [BoundaryType]"< 1) { N = atoi(argv[1]); if (N < 1) { std::cerr << "Fluid domain is too small" << std::endl; return 1; } } if (argc > 2) { int flowTypeNumber = atoi(argv[2]); if (flowTypeNumber < 0 || flowTypeNumber > (int)nonForced) { std::cerr << "Unknown fluid flow type" << std::endl; return 2; } flowType = (FlowType) flowTypeNumber; } if (argc > 3) { int boundaryTypeNumber = atoi(argv[3]); if (boundaryTypeNumber < 0 || boundaryTypeNumber > (int) partialSlip) { std::cerr << "Unknown boundary type" << std::endl; return 3; } boundaryType = (BoundaryType) boundaryTypeNumber; } UnitConverterFromResolutionAndRelaxationTime const converter( int {N}, // resolution: number of voxels per charPhysL (T) tau, // latticeRelaxationTime: relaxation time, have to be greater than 0.5! (T) diameter, // charPhysLength: reference length of simulation geometry (T) physU, // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__ (T) diameter*physU/Re, // physViscosity: physical kinematic viscosity in __m^2 / s__ (T) physRho // physDensity: physical density in __kg / m^3__ ); // Prints the converter log as console output converter.print(); // Writes the converter log in a file converter.write("poiseuille3d"); // === 2nd Step: Prepare Geometry === Vector center0(0, radius, radius); Vector center1(length, radius, radius); IndicatorCylinder3D pipe(center0, center1, radius); IndicatorLayer3D extendedDomain(pipe, converter.getPhysDeltaX()); // Instantiation of a cuboidGeometry with weights #ifdef PARALLEL_MODE_MPI const int noOfCuboids = 2*singleton::mpi().getSize(); #else // ifdef PARALLEL_MODE_MPI const int noOfCuboids = 6; #endif // ifdef PARALLEL_MODE_MPI CuboidGeometry3D cuboidGeometry(extendedDomain, converter.getPhysDeltaX(), noOfCuboids); if (flowType == forced) { // Periodic boundaries in x-direction cuboidGeometry.setPeriodicity( true, false, false ); } // Instantiation of a loadBalancer HeuristicLoadBalancer loadBalancer(cuboidGeometry); // Instantiation of a superGeometry SuperGeometry3D superGeometry(cuboidGeometry, loadBalancer, 2); prepareGeometry(converter, superGeometry); // === 3rd Step: Prepare Lattice === SuperLattice3D sLattice( superGeometry ); std::unique_ptr> bulkDynamics; #if defined(MRT) if (flowType == forced) { bulkDynamics.reset(new ForcedMRTdynamics( converter.getLatticeRelaxationFrequency(), instances::getBulkMomenta() )); } else { bulkDynamics.reset(new MRTdynamics( converter.getLatticeRelaxationFrequency(), instances::getBulkMomenta() )); } #else if (flowType == forced) { bulkDynamics.reset(new ForcedBGKdynamics( converter.getLatticeRelaxationFrequency(), instances::getBulkMomenta() )); } else { bulkDynamics.reset(new BGKdynamics( converter.getLatticeRelaxationFrequency(), instances::getBulkMomenta() )); } #endif // choose between local and non-local boundary condition sOnLatticeBoundaryCondition3D sOnBoundaryCondition( sLattice ); sOffLatticeBoundaryCondition3D sOffBoundaryCondition(sLattice); createBouzidiBoundaryCondition3D(sOffBoundaryCondition); if (boundaryType == local) { createLocalBoundaryCondition3D (sOnBoundaryCondition); } else { createInterpBoundaryCondition3D ( sOnBoundaryCondition ); } prepareLattice(sLattice, converter, *bulkDynamics, sOnBoundaryCondition, sOffBoundaryCondition, superGeometry); // set up size-increased indicator and instantiate wall shear stress functor (wss) Vector center0Extended(-converter.getPhysDeltaX() * 0.2, radius, radius); Vector center1Extended(length, radius, radius); if (flowType == forced) { center0Extended[0] -= 4.*converter.getPhysDeltaX(); center1Extended[0] += 4.*converter.getPhysDeltaX(); } IndicatorCylinder3D pipeExtended(center0Extended, center1Extended, radius); IndicatorLayer3D indicatorExtended (pipeExtended, 0.9*converter.getConversionFactorLength()*N/11.); SuperLatticePhysWallShearStress3D wss(sLattice, superGeometry, 2, converter, indicatorExtended); // === 4th Step: Main Loop with Timer === clout << "starting simulation..." << endl; Timer timer( converter.getLatticeTime( maxPhysT ), superGeometry.getStatistics().getNvoxel() ); util::ValueTracer converge( converter.getLatticeTime( physInterval ), residuum ); timer.start(); for ( int iT = 0; iT < converter.getLatticeTime( maxPhysT ); ++iT ) { if ( converge.hasConverged() ) { clout << "Simulation converged." << endl; getResults( sLattice, *bulkDynamics, converter, iT, superGeometry, timer, converge.hasConverged(), wss ); break; } // === 5th Step: Definition of Initial and Boundary Conditions === // in this application no boundary conditions have to be adjusted // === 6th Step: Collide and Stream Execution === sLattice.collideAndStream(); // === 7th Step: Computation and Output of the Results === getResults( sLattice, *bulkDynamics, converter, iT, superGeometry, timer, converge.hasConverged(), wss ); converge.takeValue( sLattice.getStatistics().getAverageEnergy(), true ); } timer.stop(); timer.printSummary(); }