/* Lattice Boltzmann sample, written in C++, using the OpenLB
* library
*
* Copyright (C) 2006-2015 Fabian Klemens, Jonas Latt, Mathias J. Krause
* Vojtech Cvrcek, Peter Weisbrod
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/* settlingCube3d.cpp:
* The case examines the settling of a cubical silica particle
* under the influence of gravity.
* The object is surrounded by water in a rectangular domain
* limited by no-slip boundary conditions.
* For the calculation of forces an DNS approach is chosen
* which also leads to a back-coupling of the particle on the fluid,
* inducing a flow.
*
* The simulation is based on the homogenised lattice Boltzmann approach
* (HLBM) introduced in "Particle flow simulations with homogenised
* lattice Boltzmann methods" by Krause et al.
* and extended in "Towards the simulation of arbitrarily shaped 3D particles
* using a homogenised lattice Boltzmann method" by Trunk et al.
* for the simulation of 3D particles.
*
* This example demonstrates the usage of HLBM in the OpenLB framework.
*/
#include "olb3D.h"
#include "olb3D.hh" // use generic version only!
#include
#include
#include
#include
using namespace olb;
using namespace olb::descriptors;
using namespace olb::graphics;
using namespace olb::util;
using namespace std;
typedef double T;
#define DESCRIPTOR D3Q19
#define WriteVTK
// Discretization Settings
int res = 30;
T const charLatticeVelocity = 0.01;
// Time Settings
T const maxPhysT = 0.5; // max. simulation time in s
T const iTwrite = 0.02; // write out intervall in s
// Domain Settings
T const lengthX = 0.01;
T const lengthY = 0.01;
T const lengthZ = 0.05;
// Fluid Settings
T const physDensity = 1000;
T const physViscosity = 1E-5;
//Particle Settings
T centerX = lengthX*.5;
T centerY = lengthY*.5;
T centerZ = lengthZ*.9;
T const cubeDensity = 2500;
T const cubeEdgeLength = 0.0025;
Vector cubeCenter = {centerX,centerY,centerZ};
Vector cubeOrientation = {0.,15.,0.};
Vector cubeVelocity = {0.,0.,0.};
Vector externalAcceleration = {.0, .0, -9.81 * (1. - physDensity / cubeDensity)};
// Characteristic Quantities
T const charPhysLength = lengthX;
T const charPhysVelocity = 0.15; // Assumed maximal velocity
// Prepare geometry
void prepareGeometry(UnitConverter const& converter,
SuperGeometry3D& superGeometry)
{
OstreamManager clout(std::cout, "prepareGeometry");
clout << "Prepare Geometry ..." << std::endl;
superGeometry.rename(0, 2);
superGeometry.rename(2, 1, 1, 1, 1);
superGeometry.clean();
superGeometry.innerClean();
superGeometry.checkForErrors();
superGeometry.getStatistics().print();
clout << "Prepare Geometry ... OK" << std::endl;
return;
}
// Set up the geometry of the simulation
void prepareLattice(
SuperLattice3D& sLattice, UnitConverter const& converter,
Dynamics& designDynamics,
sOnLatticeBoundaryCondition3D& sBoundaryCondition,
SuperGeometry3D& superGeometry)
{
OstreamManager clout(std::cout, "prepareLattice");
clout << "Prepare Lattice ..." << std::endl;
clout << "setting Velocity Boundaries ..." << std::endl;
/// Material=0 -->do nothing
sLattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics());
sLattice.defineDynamics(superGeometry, 1, &designDynamics);
sLattice.defineDynamics(superGeometry, 2, &instances::getBounceBack());
clout << "Prepare Lattice ... OK" << std::endl;
}
//Set Boundary Values
void setBoundaryValues(SuperLattice3D& sLattice,
UnitConverter const& converter, int iT,
SuperGeometry3D& superGeometry)
{
OstreamManager clout(std::cout, "setBoundaryValues");
if (iT == 0) {
AnalyticalConst3D zero(0.);
AnalyticalConst3D one(1.);
sLattice.defineField(superGeometry.getMaterialIndicator({0,1,2}), one);
// Set initial condition
AnalyticalConst3D ux(0.);
AnalyticalConst3D uy(0.);
AnalyticalConst3D uz(0.);
AnalyticalConst3D rho(1.);
AnalyticalComposed3D u(ux, uy, uz);
//Initialize all values of distribution functions to their local equilibrium
sLattice.defineRhoU(superGeometry, 1, rho, u);
sLattice.iniEquilibrium(superGeometry, 1, rho, u);
// Make the lattice ready for simulation
sLattice.initialize();
}
}
/// Computes the pressure drop between the voxels before and after the cylinder
void getResults(SuperLattice3D& sLattice,
UnitConverter const& converter, int iT,
SuperGeometry3D& superGeometry, Timer& timer,
ParticleDynamics3D particleDynamics)
{
OstreamManager clout(std::cout, "getResults");
#ifdef WriteVTK
SuperVTMwriter3D vtkWriter("sedimentation");
SuperLatticePhysVelocity3D velocity(sLattice, converter);
SuperLatticePhysPressure3D pressure(sLattice, converter);
SuperLatticePhysExternalPorosity3D externalPor(sLattice, converter);
vtkWriter.addFunctor(velocity);
vtkWriter.addFunctor(pressure);
vtkWriter.addFunctor(externalPor);
if (iT == 0) {
/// Writes the converter log file
SuperLatticeGeometry3D geometry(sLattice, superGeometry);
SuperLatticeCuboid3D cuboid(sLattice);
SuperLatticeRank3D rank(sLattice);
vtkWriter.write(geometry);
vtkWriter.write(cuboid);
vtkWriter.write(rank);
vtkWriter.createMasterFile();
}
if (iT % converter.getLatticeTime(iTwrite) == 0) {
vtkWriter.write(iT);
}
#endif
/// Writes output on the console
if (iT % converter.getLatticeTime(iTwrite) == 0) {
timer.update(iT);
timer.printStep();
sLattice.getStatistics().print(iT, converter.getPhysTime(iT));
particleDynamics.print();
}
}
int main(int argc, char* argv[])
{
/// === 1st Step: Initialization ===
olbInit(&argc, &argv);
singleton::directories().setOutputDir("./tmp/");
OstreamManager clout(std::cout, "main");
UnitConverterFromResolutionAndLatticeVelocity converter(
(int) res, //resolution
( T ) charLatticeVelocity, //charLatticeVelocity
( T ) charPhysLength, //charPhysLength
( T ) charPhysVelocity, //charPhysVelocity
( T ) physViscosity, //physViscosity
( T ) physDensity //physDensity
);
converter.print();
/// === 2rd Step: Prepare Geometry ===
/// Instantiation of a cuboidGeometry with weights
std::vector extend(3, T());
extend[0] = lengthX;
extend[1] = lengthY;
extend[2] = lengthZ;
std::vector origin(3, T());
IndicatorCuboid3D cuboid(extend, origin);
#ifdef PARALLEL_MODE_MPI
CuboidGeometry3D cuboidGeometry(cuboid, converter.getConversionFactorLength(), singleton::mpi().getSize());
#else
CuboidGeometry3D cuboidGeometry(cuboid, converter.getConversionFactorLength(), 7);
#endif
cuboidGeometry.print();
HeuristicLoadBalancer loadBalancer(cuboidGeometry);
SuperGeometry3D superGeometry(cuboidGeometry, loadBalancer, 2);
prepareGeometry(converter, superGeometry);
/// === 3rd Step: Prepare Lattice ===
SuperLattice3D sLattice(superGeometry);
PorousParticleBGKdynamics designDynamics(converter.getLatticeRelaxationFrequency(), instances::getBulkMomenta());
sOnLatticeBoundaryCondition3D sBoundaryCondition(sLattice);
createLocalBoundaryCondition3D(sBoundaryCondition);
prepareLattice(sLattice, converter, designDynamics, sBoundaryCondition, superGeometry);
/// === 4th Step: Main Loop with Timer ===
Timer timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel());
timer.start();
// Create Particle Dynamics
ParticleDynamics3D particleDynamics(sLattice, converter, superGeometry, lengthX, lengthY, lengthZ, externalAcceleration);
// Create Cube Indicator
T epsilon = 0.5*converter.getConversionFactorLength();
//Cube indicator
SmoothIndicatorCuboid3D particleIndicator(cubeCenter, cubeEdgeLength, cubeEdgeLength, cubeEdgeLength, epsilon, cubeOrientation, cubeDensity, cubeVelocity);
//Sphere indicator
//SmoothIndicatorSphere3D particleIndicator(cubeCenter, 0.5*cubeEdgeLength, epsilon, cubeDensity, cubeVelocity);
//Cylinder indicator
//SmoothIndicatorCylinder3D particleIndicator(cubeCenter, { 1, 0, 0 }, 0.5*cubeEdgeLength, cubeEdgeLength, epsilon, cubeOrientation, cubeDensity, cubeVelocity);
SuperExternal3D superExtPorosity(superGeometry, sLattice, sLattice.getOverlap());
SuperExternal3D superExtNumerator(superGeometry, sLattice, sLattice.getOverlap());
SuperExternal3D superExtDenominator(superGeometry, sLattice, sLattice.getOverlap());
particleDynamics.addParticle( particleIndicator );
particleDynamics.print();
/// === 5th Step: Definition of Initial and Boundary Conditions ===
setBoundaryValues(sLattice, converter, 0, superGeometry);
clout << "MaxIT: " << converter.getLatticeTime(maxPhysT) << std::endl;
for (int iT = 0; iT < converter.getLatticeTime(maxPhysT)+10; ++iT) {
particleDynamics.simulateTimestep("verlet");
getResults(sLattice, converter, iT, superGeometry, timer, particleDynamics);
sLattice.collideAndStream();
superExtPorosity.communicate();
superExtNumerator.communicate();
superExtDenominator.communicate();
}
timer.stop();
timer.printSummary();
}