/* Lattice Boltzmann sample, written in C++, using the OpenLB
* library
*
* Copyright (C) 2017 Davide Dapelo, Mathias J. Krause
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/* porousPoiseuille2d.cpp:
* Poiseuille flow through porous media.
* This implementation is the reproduction of the Guo and Zhao (2002)'s
* benchmark example A. The theoretical maximum velocity is calculated
* as in Equation 21, and the velocity profile as in Equation 23 of
* the original reference.
*/
#include "olb2D.h"
#include "olb2D.hh" // use only generic version!
#include
#include
#include
#include
#include
using namespace olb;
using namespace olb::descriptors;
using namespace olb::graphics;
using namespace std;
typedef double T;
#define DESCRIPTOR GuoZhaoD2Q9Descriptor
#define DYNAMICS GuoZhaoBGKdynamics
//#define DYNAMICS SmagorinskyGuoZhaoBGKdynamics
/// Functional to calculate velocity profile on pipe with porous media.
template
class PorousPipe2D : public AnalyticalF2D {
protected:
std::vector axisPoint;
std::vector axisDirection;
T radius, rFactor, u0;
public:
PorousPipe2D(std::vector axisPoint_, std::vector axisDirection_, T radius_, T rFactor_, T u0_);
bool operator()(T output[], const T x[]) override;
};
template
PorousPipe2D::PorousPipe2D(std::vector axisPoint_, std::vector axisDirection_, T radius_, T rFactor_, T u0_)
: AnalyticalF2D(2)
{
this->getName() = "PorousPipe2D";
axisPoint.resize(2);
axisDirection.resize(2);
for (int i = 0; i < 2; ++i) {
axisDirection[i] = axisDirection_[i];
axisPoint[i] = axisPoint_[i];
}
radius = radius_;
rFactor = rFactor_;
u0 = u0_;
}
template
bool PorousPipe2D::operator()(T output[], const T x[])
{
output[0] = axisDirection[0]*u0*(cosh(rFactor*radius) - cosh(rFactor*x[1] - rFactor*radius))/(cosh(rFactor*radius) - 1);
output[1] = axisDirection[1]*u0*(cosh(rFactor*radius) - cosh(rFactor*x[0] - rFactor*radius))/(cosh(rFactor*radius) - 1);
return true;
}
/// Stores geometry information in form of material numbers
void prepareGeometry(UnitConverter const& converter, T lx, T ly,
SuperGeometry2D& superGeometry)
{
OstreamManager clout(std::cout,"prepareGeometry");
clout << "Prepare Geometry ..." << std::endl;
superGeometry.rename(0,2);
std::vector extend(2,T());
extend[0] = lx;
extend[1] = ly - 1.8*converter.getPhysLength(1);
std::vector origin(2,T());
origin[1] = 0.9*converter.getPhysLength(1);
IndicatorCuboid2D cuboid2(extend, origin);
superGeometry.rename(2,1,cuboid2);
/// Removes all not needed boundary voxels outside the surface
superGeometry.clean();
/// Removes all not needed boundary voxels inside the surface
superGeometry.innerClean();
superGeometry.checkForErrors();
superGeometry.print();
clout << "Prepare Geometry ... OK" << std::endl;
}
/// Set up the geometry of the simulation
void prepareLattice(UnitConverter const& converter, T lx, T ly,
T epsilonIn, T KIn, T bodyForceIn,
SuperLattice2D& sLattice,
Dynamics& bulkDynamics,
sOnLatticeBoundaryCondition2D& sBoundaryCondition,
SuperGuoZhaoInstantiator2D >& sGuoZhaoInstantiator,
SuperGeometry2D& superGeometry )
{
OstreamManager clout(std::cout,"prepareLattice");
clout << "Prepare Lattice ..." << std::endl;
T omega = converter.getLatticeRelaxationFrequency();
/// Material=0 -->do nothing
sLattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics());
/// Material=1 -->bulk dynamics
sLattice.defineDynamics(superGeometry, 1, &bulkDynamics);
/// Material=2 -->bulk dynamics
sLattice.defineDynamics(superGeometry, 2, &bulkDynamics);
/// Setting of the boundary conditions
sBoundaryCondition.addVelocityBoundary(superGeometry, 2, omega);
/// Initial conditions
std::vector epsilonValue(1, epsilonIn);
AnalyticalConst2D epsilon(epsilonValue);
std::vector KValue(1, KIn);
AnalyticalConst2D K(KValue);
std::vector bodyForceValue (2, (T)0);
bodyForceValue[0] = bodyForceIn;
AnalyticalConst2D bodyForce(bodyForceValue);
// Initialize porosity
sGuoZhaoInstantiator.defineEpsilon(superGeometry, 1, epsilon);
sGuoZhaoInstantiator.defineEpsilon(superGeometry, 2, epsilon);
sGuoZhaoInstantiator.defineK(converter, superGeometry, 1, K);
sGuoZhaoInstantiator.defineK(converter, superGeometry, 2, K);
sGuoZhaoInstantiator.defineNu(converter, superGeometry, 1);
sGuoZhaoInstantiator.defineNu(converter, superGeometry, 2);
sGuoZhaoInstantiator.defineBodyForce(converter, superGeometry, 1, bodyForce);
sGuoZhaoInstantiator.defineBodyForce(converter, superGeometry, 2, bodyForce);
/// Make the lattice ready for simulation
clout << "Ready to initialize the lattice..." << std::endl;
sLattice.initialize();
clout << "Prepare Lattice ... OK" << std::endl;
}
/// Compute error norms
void error( SuperGeometry2D& superGeometry,
SuperLattice2D& sLattice,
UnitConverter const& converter,
Dynamics& bulkDynamics,
AnalyticalF2D& uSol) {
OstreamManager clout( std::cout,"error" );
int input[1] = { };
T result[1] = { };
SuperLatticePhysVelocity2D u( sLattice,converter );
auto indicatorF = superGeometry.getMaterialIndicator(1);
// velocity error
SuperAbsoluteErrorL1Norm2D absVelocityErrorNormL1(u, uSol, indicatorF);
absVelocityErrorNormL1(result, input);
clout << "velocity-L1-error(abs)=" << result[0];
SuperRelativeErrorL1Norm2D relVelocityErrorNormL1(u, uSol, indicatorF);
relVelocityErrorNormL1(result, input);
clout << "; velocity-L1-error(rel)=" << result[0] << std::endl;
SuperAbsoluteErrorL2Norm2D absVelocityErrorNormL2(u, uSol, indicatorF);
absVelocityErrorNormL2(result, input);
clout << "velocity-L2-error(abs)=" << result[0];
SuperRelativeErrorL2Norm2D relVelocityErrorNormL2(u, uSol, indicatorF);
relVelocityErrorNormL2(result, input);
clout << "; velocity-L2-error(rel)=" << result[0] << std::endl;
SuperAbsoluteErrorLinfNorm2D absVelocityErrorNormLinf(u, uSol, indicatorF);
absVelocityErrorNormLinf(result, input);
clout << "velocity-Linf-error(abs)=" << result[0] << std::endl;
}
/// Output to console and files
void getResults(SuperLattice2D& sLattice, Dynamics& bulkDynamics,
UnitConverter const& converter, T lx, T ly, T G, T K, T nu, T epsilon, T maxPhysT, int iT, int numOfIterations,
SuperGeometry2D& superGeometry, Timer& timer, bool hasConverged)
{
OstreamManager clout(std::cout,"getResults");
SuperVTMwriter2D vtkWriter("porousPoiseuille2d");
SuperLatticePhysVelocity2D velocity(sLattice, converter);
SuperLatticePhysPressure2D pressure(sLattice, converter);
// SuperLatticeEpsilon2D epsilonVTM(sLattice, converter);
// SuperLatticePhysK2D KVTM(sLattice, converter);
// SuperLatticePhysBodyForce2D bodyForce(sLattice, converter);
vtkWriter.addFunctor( velocity );
vtkWriter.addFunctor( pressure );
// vtkWriter.addFunctor( epsilonVTM );
// vtkWriter.addFunctor( KVTM );
// vtkWriter.addFunctor( bodyForce );
const int vtkIter = converter.getLatticeTime(maxPhysT/numOfIterations);
const int statIter = converter.getLatticeTime(maxPhysT/numOfIterations);
static Gnuplot gplot_uCentre( "uCentre" );
static Gnuplot gplot_profile( "profile" );
if (iT==0) {
/// Writes the geometry, cuboid no. and rank no. as vti file for visualization
SuperLatticeGeometry2D geometry(sLattice, superGeometry);
SuperLatticeCuboid2D cuboid(sLattice);
SuperLatticeRank2D rank(sLattice);
superGeometry.rename(0,2);
vtkWriter.write(geometry);
vtkWriter.write(cuboid);
vtkWriter.write(rank);
vtkWriter.createMasterFile();
}
/// Writes the vtk files and profile text file
T Ly = converter.getLatticeLength(ly);
AnalyticalFfromSuperF2D intpolateVelocity( velocity, true );
T centre[2] = {converter.getCharPhysLength()/2, converter.getCharPhysLength()/2};
T uCentre[2];
intpolateVelocity(uCentre, centre);
T r = sqrt(epsilon/K);
T dx = converter.getPhysDeltaX();
const T radius = ly/2.;
std::vector axisPoint(2,T());
axisPoint[0] = lx/2.;
axisPoint[1] = ly/2.;
std::vector axisDirection(2,T());
axisDirection[0] = 1;
axisDirection[1] = 0;
PorousPipe2D uSol(axisPoint, axisDirection, radius, r, uCentre[0]);
if (iT%vtkIter==0 || hasConverged) {
vtkWriter.write(iT);
SuperEuklidNorm2D normVel(velocity);
BlockReduction2D2D planeReduction( normVel, 600, BlockDataSyncMode::ReduceOnly );
// write output of velocity as JPEG
heatmap::write(planeReduction, iT);
ofstream *ofile = nullptr;
if (singleton::mpi().isMainProcessor()) {
ofile = new ofstream((singleton::directories().getLogOutDir()+"centerVel.dat").c_str());
}
for (int iY=0; iY<=Ly; ++iY) {
T point[2]= {T(),T()};
point[0] = lx/2.;
point[1] = (T)iY*converter.getPhysLength(1);
T analytical[2] = {T(),T()};
uSol(analytical,point);
SuperLatticePhysVelocity2D velocity(sLattice, converter);
AnalyticalFfromSuperF2D intpolateVelocity(velocity, true);
T numerical[2] = {T(),T()};
intpolateVelocity(numerical,point);
if (singleton::mpi().isMainProcessor()) {
*ofile << iY*dx << " " << analytical[0]
<< " " << numerical[0] << "\n";
if ( iT == .8*converter.getLatticeTime( maxPhysT ) ) {
// if ( iT == converter.numTimeSteps( maxPhysT )-1 ) {
gplot_profile.setData( point[1], {numerical[0], analytical[0]}, {"Numerical profile", "Analytical profile"}, "bottom right" );
gplot_profile.writePNG();
}
}
}
delete ofile;
}
/// Writes output on the console
if (iT%statIter==0 || hasConverged) {
/// Timer console output
timer.update(iT);
timer.printStep();
/// Lattice statistics console output
sLattice.getStatistics().print(iT,converter.getPhysTime(iT));
/// Error norms
error(superGeometry, sLattice, converter, bulkDynamics, uSol);
AnalyticalFfromSuperF2D intpolatePressure( pressure, true );
AnalyticalFfromSuperF2D intpolateVelocity( velocity, true );
T centre[2] = {converter.getCharPhysLength()/2, converter.getCharPhysLength()/2};
T uCentre[2];
intpolateVelocity(uCentre, centre);
T uMaxMeas = sLattice.getStatistics().getMaxU() / converter.getCharLatticeVelocity();
T uMaxTheo = G*K/nu*(1.-1./cosh(converter.getCharPhysLength()/2 * sqrt(epsilon/K)));
clout << "uMaxTheo=" << uMaxTheo
<< "; uMaxMeas=" << uMaxMeas
<< "; uCentre=" << uCentre[0]
<< std::endl;
gplot_uCentre.setData( converter.getPhysTime( iT ), uCentre[0], "Centre velocity", "bottom right" );
gplot_uCentre.writePNG( iT, maxPhysT );
}
}
int main(int argc, char* argv[])
{
/// === 1st Step: Initialization ===
olbInit(&argc, &argv);
singleton::directories().setOutputDir("./tmp/");
OstreamManager clout(std::cout,"main");
// display messages from every single mpi process
//clout.setMultiOutput(true);
// Parameters for the simulation setup
int nx; // length of the channel
int ny; // height of the channel
int N; // resolution of the model
T tau; // Relaxation time
T Re; // Reynolds number
T Da; // Darcy number
T epsilon; // Porosity (non-dimensional)
T K; // Permeability (SI units)
T maxPhysT; // max. simulation time in s, SI unit
int numOfIterations; // number of iterations reported in paraview-Gnuplot.
T residuum;
string fName("input.xml");
XMLreader config(fName);
config["setup"]["nx"].read(nx);
config["setup"]["ny"].read(ny);
config["setup"]["tau"].read(tau);
config["setup"]["N"].read(N);
config["setup"]["Da"].read(Da);
config["setup"]["Re"].read(Re);
config["porous"]["epsilon"].read(epsilon);
config["porous"]["K"].read(K);
config["time"]["maxPhysT"].read(maxPhysT);
config["time"]["numOfIterations"].read(numOfIterations);
config["convergence"]["residuum"].read(residuum);
T charL = sqrt(K/Da);
T lx = nx*charL;
T ly = ny*charL;
//T latticeU = Re*(tau-(T).5)/((T)3*N);
T charU = (T)1.;
T bodyForceValue = charU*charU*charL / ( Re*K*((T)1. - (T)1./cosh(charL/(T)2 * sqrt(epsilon/K))) );
T nu = bodyForceValue*K/charU*((T)1. - (T)1./cosh(charL/(T)2 * sqrt(epsilon/K)));
UnitConverterFromResolutionAndRelaxationTime const converter(
int {N}, // resolution: number of voxels per charPhysL
(T) tau, // latticeRelaxationTime: relaxation time, have to be greater than 0.5!
(T) charL, // charPhysLength: reference length of simulation geometry
(T) charU, // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__
(T) nu, // physViscosity: physical kinematic viscosity in __m^2 / s__
(T) 1.0 // physDensity: physical density in __kg / m^3__
);
// Prints the converter log as console output
converter.print();
// Writes the converter log in a file
converter.write("porousPoiseuille2d");
/// === 2nd Step: Prepare Geometry ===
std::vector extend(2,T());
extend[0] = lx;
extend[1] = ly;
std::vector origin(2,T());
IndicatorCuboid2D cuboid(extend, origin);
/// Instantiation of a cuboidGeometry with weights
#ifdef PARALLEL_MODE_MPI
const int noOfCuboids = singleton::mpi().getSize();
#else
const int noOfCuboids = 7;
#endif
CuboidGeometry2D cuboidGeometry(cuboid, converter.getPhysDeltaX(), noOfCuboids);
/// Periodic boundaries in x-direction
cuboidGeometry.setPeriodicity(true, false);
/// Instantiation of a loadBalancer
HeuristicLoadBalancer loadBalancer(cuboidGeometry);
/// Instantiation of a superGeometry
SuperGeometry2D superGeometry(cuboidGeometry, loadBalancer, 2);
prepareGeometry(converter, lx, ly, superGeometry);
/// === 3rd Step: Prepare Lattice ===
SuperLattice2D sLattice(superGeometry);
DYNAMICS bulkDynamics (
converter.getLatticeRelaxationFrequency(),
instances::getBulkMomenta()
);
SuperGuoZhaoInstantiator2D > sGuoZhaoInstantiator(sLattice);
// choose between local and non-local boundary condition
sOnLatticeBoundaryCondition2D sBoundaryCondition(sLattice);
createInterpBoundaryCondition2D > (sBoundaryCondition);
prepareLattice(converter, lx, ly, epsilon, K, bodyForceValue, sLattice, bulkDynamics, sBoundaryCondition, sGuoZhaoInstantiator, superGeometry);
SuperExternal2D externalForce(superGeometry, sLattice, 2);
SuperExternal2D externalEpsilon(superGeometry, sLattice, 2);
SuperExternal2D externalK(superGeometry, sLattice, 2);
SuperExternal2D externalNu(superGeometry, sLattice, 2);
SuperExternal2D externalBodyForce(superGeometry, sLattice, 2);
/// === 4th Step: Main Loop with Timer ===
clout << "starting simulation..." << endl;
Timer timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel() );
util::ValueTracer converge( converter.getLatticeTime(maxPhysT/numOfIterations), residuum );
timer.start();
for (int iT = 0; iT < converter.getLatticeTime(maxPhysT); ++iT) {
if ( converge.hasConverged() ) {
clout << "Simulation converged." << endl;
getResults(sLattice, bulkDynamics, converter, lx, ly, bodyForceValue, K, converter.getPhysViscosity(), epsilon, maxPhysT, iT, numOfIterations, superGeometry, timer, converge.hasConverged() );
break;
}
/// === 5th Step: Definition of Initial and Boundary Conditions ===
// in this application no boundary conditions have to be adjusted
/// === 6th Step: Collide and Stream Execution ===
sLattice.collideAndStream();
externalForce.communicate();
externalEpsilon.communicate();
externalK.communicate();
externalNu.communicate();
externalBodyForce.communicate();
/// === 7th Step: Computation and Output of the Results ===
getResults(sLattice, bulkDynamics, converter, lx, ly, bodyForceValue, K, converter.getPhysViscosity(), epsilon, maxPhysT, iT, numOfIterations, superGeometry, timer, converge.hasConverged() );
converge.takeValue( sLattice.getStatistics().getAverageEnergy(), true );
}
timer.stop();
timer.printSummary();
}