/* Lattice Boltzmann sample, written in C++, using the OpenLB * library * * Copyright (C) 2017 Davide Dapelo, Mathias J. Krause * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /* porousPoiseuille2d.cpp: * Poiseuille flow through porous media. * This implementation is the reproduction of the Guo and Zhao (2002)'s * benchmark example A. The theoretical maximum velocity is calculated * as in Equation 21, and the velocity profile as in Equation 23 of * the original reference. */ #include "olb2D.h" #include "olb2D.hh" // use only generic version! #include #include #include #include #include using namespace olb; using namespace olb::descriptors; using namespace olb::graphics; using namespace std; typedef double T; #define DESCRIPTOR GuoZhaoD2Q9Descriptor #define DYNAMICS GuoZhaoBGKdynamics //#define DYNAMICS SmagorinskyGuoZhaoBGKdynamics /// Functional to calculate velocity profile on pipe with porous media. template class PorousPipe2D : public AnalyticalF2D { protected: std::vector axisPoint; std::vector axisDirection; T radius, rFactor, u0; public: PorousPipe2D(std::vector axisPoint_, std::vector axisDirection_, T radius_, T rFactor_, T u0_); bool operator()(T output[], const T x[]) override; }; template PorousPipe2D::PorousPipe2D(std::vector axisPoint_, std::vector axisDirection_, T radius_, T rFactor_, T u0_) : AnalyticalF2D(2) { this->getName() = "PorousPipe2D"; axisPoint.resize(2); axisDirection.resize(2); for (int i = 0; i < 2; ++i) { axisDirection[i] = axisDirection_[i]; axisPoint[i] = axisPoint_[i]; } radius = radius_; rFactor = rFactor_; u0 = u0_; } template bool PorousPipe2D::operator()(T output[], const T x[]) { output[0] = axisDirection[0]*u0*(cosh(rFactor*radius) - cosh(rFactor*x[1] - rFactor*radius))/(cosh(rFactor*radius) - 1); output[1] = axisDirection[1]*u0*(cosh(rFactor*radius) - cosh(rFactor*x[0] - rFactor*radius))/(cosh(rFactor*radius) - 1); return true; } /// Stores geometry information in form of material numbers void prepareGeometry(UnitConverter const& converter, T lx, T ly, SuperGeometry2D& superGeometry) { OstreamManager clout(std::cout,"prepareGeometry"); clout << "Prepare Geometry ..." << std::endl; superGeometry.rename(0,2); std::vector extend(2,T()); extend[0] = lx; extend[1] = ly - 1.8*converter.getPhysLength(1); std::vector origin(2,T()); origin[1] = 0.9*converter.getPhysLength(1); IndicatorCuboid2D cuboid2(extend, origin); superGeometry.rename(2,1,cuboid2); /// Removes all not needed boundary voxels outside the surface superGeometry.clean(); /// Removes all not needed boundary voxels inside the surface superGeometry.innerClean(); superGeometry.checkForErrors(); superGeometry.print(); clout << "Prepare Geometry ... OK" << std::endl; } /// Set up the geometry of the simulation void prepareLattice(UnitConverter const& converter, T lx, T ly, T epsilonIn, T KIn, T bodyForceIn, SuperLattice2D& sLattice, Dynamics& bulkDynamics, sOnLatticeBoundaryCondition2D& sBoundaryCondition, SuperGuoZhaoInstantiator2D >& sGuoZhaoInstantiator, SuperGeometry2D& superGeometry ) { OstreamManager clout(std::cout,"prepareLattice"); clout << "Prepare Lattice ..." << std::endl; T omega = converter.getLatticeRelaxationFrequency(); /// Material=0 -->do nothing sLattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics()); /// Material=1 -->bulk dynamics sLattice.defineDynamics(superGeometry, 1, &bulkDynamics); /// Material=2 -->bulk dynamics sLattice.defineDynamics(superGeometry, 2, &bulkDynamics); /// Setting of the boundary conditions sBoundaryCondition.addVelocityBoundary(superGeometry, 2, omega); /// Initial conditions std::vector epsilonValue(1, epsilonIn); AnalyticalConst2D epsilon(epsilonValue); std::vector KValue(1, KIn); AnalyticalConst2D K(KValue); std::vector bodyForceValue (2, (T)0); bodyForceValue[0] = bodyForceIn; AnalyticalConst2D bodyForce(bodyForceValue); // Initialize porosity sGuoZhaoInstantiator.defineEpsilon(superGeometry, 1, epsilon); sGuoZhaoInstantiator.defineEpsilon(superGeometry, 2, epsilon); sGuoZhaoInstantiator.defineK(converter, superGeometry, 1, K); sGuoZhaoInstantiator.defineK(converter, superGeometry, 2, K); sGuoZhaoInstantiator.defineNu(converter, superGeometry, 1); sGuoZhaoInstantiator.defineNu(converter, superGeometry, 2); sGuoZhaoInstantiator.defineBodyForce(converter, superGeometry, 1, bodyForce); sGuoZhaoInstantiator.defineBodyForce(converter, superGeometry, 2, bodyForce); /// Make the lattice ready for simulation clout << "Ready to initialize the lattice..." << std::endl; sLattice.initialize(); clout << "Prepare Lattice ... OK" << std::endl; } /// Compute error norms void error( SuperGeometry2D& superGeometry, SuperLattice2D& sLattice, UnitConverter const& converter, Dynamics& bulkDynamics, AnalyticalF2D& uSol) { OstreamManager clout( std::cout,"error" ); int input[1] = { }; T result[1] = { }; SuperLatticePhysVelocity2D u( sLattice,converter ); auto indicatorF = superGeometry.getMaterialIndicator(1); // velocity error SuperAbsoluteErrorL1Norm2D absVelocityErrorNormL1(u, uSol, indicatorF); absVelocityErrorNormL1(result, input); clout << "velocity-L1-error(abs)=" << result[0]; SuperRelativeErrorL1Norm2D relVelocityErrorNormL1(u, uSol, indicatorF); relVelocityErrorNormL1(result, input); clout << "; velocity-L1-error(rel)=" << result[0] << std::endl; SuperAbsoluteErrorL2Norm2D absVelocityErrorNormL2(u, uSol, indicatorF); absVelocityErrorNormL2(result, input); clout << "velocity-L2-error(abs)=" << result[0]; SuperRelativeErrorL2Norm2D relVelocityErrorNormL2(u, uSol, indicatorF); relVelocityErrorNormL2(result, input); clout << "; velocity-L2-error(rel)=" << result[0] << std::endl; SuperAbsoluteErrorLinfNorm2D absVelocityErrorNormLinf(u, uSol, indicatorF); absVelocityErrorNormLinf(result, input); clout << "velocity-Linf-error(abs)=" << result[0] << std::endl; } /// Output to console and files void getResults(SuperLattice2D& sLattice, Dynamics& bulkDynamics, UnitConverter const& converter, T lx, T ly, T G, T K, T nu, T epsilon, T maxPhysT, int iT, int numOfIterations, SuperGeometry2D& superGeometry, Timer& timer, bool hasConverged) { OstreamManager clout(std::cout,"getResults"); SuperVTMwriter2D vtkWriter("porousPoiseuille2d"); SuperLatticePhysVelocity2D velocity(sLattice, converter); SuperLatticePhysPressure2D pressure(sLattice, converter); // SuperLatticeEpsilon2D epsilonVTM(sLattice, converter); // SuperLatticePhysK2D KVTM(sLattice, converter); // SuperLatticePhysBodyForce2D bodyForce(sLattice, converter); vtkWriter.addFunctor( velocity ); vtkWriter.addFunctor( pressure ); // vtkWriter.addFunctor( epsilonVTM ); // vtkWriter.addFunctor( KVTM ); // vtkWriter.addFunctor( bodyForce ); const int vtkIter = converter.getLatticeTime(maxPhysT/numOfIterations); const int statIter = converter.getLatticeTime(maxPhysT/numOfIterations); static Gnuplot gplot_uCentre( "uCentre" ); static Gnuplot gplot_profile( "profile" ); if (iT==0) { /// Writes the geometry, cuboid no. and rank no. as vti file for visualization SuperLatticeGeometry2D geometry(sLattice, superGeometry); SuperLatticeCuboid2D cuboid(sLattice); SuperLatticeRank2D rank(sLattice); superGeometry.rename(0,2); vtkWriter.write(geometry); vtkWriter.write(cuboid); vtkWriter.write(rank); vtkWriter.createMasterFile(); } /// Writes the vtk files and profile text file T Ly = converter.getLatticeLength(ly); AnalyticalFfromSuperF2D intpolateVelocity( velocity, true ); T centre[2] = {converter.getCharPhysLength()/2, converter.getCharPhysLength()/2}; T uCentre[2]; intpolateVelocity(uCentre, centre); T r = sqrt(epsilon/K); T dx = converter.getPhysDeltaX(); const T radius = ly/2.; std::vector axisPoint(2,T()); axisPoint[0] = lx/2.; axisPoint[1] = ly/2.; std::vector axisDirection(2,T()); axisDirection[0] = 1; axisDirection[1] = 0; PorousPipe2D uSol(axisPoint, axisDirection, radius, r, uCentre[0]); if (iT%vtkIter==0 || hasConverged) { vtkWriter.write(iT); SuperEuklidNorm2D normVel(velocity); BlockReduction2D2D planeReduction( normVel, 600, BlockDataSyncMode::ReduceOnly ); // write output of velocity as JPEG heatmap::write(planeReduction, iT); ofstream *ofile = nullptr; if (singleton::mpi().isMainProcessor()) { ofile = new ofstream((singleton::directories().getLogOutDir()+"centerVel.dat").c_str()); } for (int iY=0; iY<=Ly; ++iY) { T point[2]= {T(),T()}; point[0] = lx/2.; point[1] = (T)iY*converter.getPhysLength(1); T analytical[2] = {T(),T()}; uSol(analytical,point); SuperLatticePhysVelocity2D velocity(sLattice, converter); AnalyticalFfromSuperF2D intpolateVelocity(velocity, true); T numerical[2] = {T(),T()}; intpolateVelocity(numerical,point); if (singleton::mpi().isMainProcessor()) { *ofile << iY*dx << " " << analytical[0] << " " << numerical[0] << "\n"; if ( iT == .8*converter.getLatticeTime( maxPhysT ) ) { // if ( iT == converter.numTimeSteps( maxPhysT )-1 ) { gplot_profile.setData( point[1], {numerical[0], analytical[0]}, {"Numerical profile", "Analytical profile"}, "bottom right" ); gplot_profile.writePNG(); } } } delete ofile; } /// Writes output on the console if (iT%statIter==0 || hasConverged) { /// Timer console output timer.update(iT); timer.printStep(); /// Lattice statistics console output sLattice.getStatistics().print(iT,converter.getPhysTime(iT)); /// Error norms error(superGeometry, sLattice, converter, bulkDynamics, uSol); AnalyticalFfromSuperF2D intpolatePressure( pressure, true ); AnalyticalFfromSuperF2D intpolateVelocity( velocity, true ); T centre[2] = {converter.getCharPhysLength()/2, converter.getCharPhysLength()/2}; T uCentre[2]; intpolateVelocity(uCentre, centre); T uMaxMeas = sLattice.getStatistics().getMaxU() / converter.getCharLatticeVelocity(); T uMaxTheo = G*K/nu*(1.-1./cosh(converter.getCharPhysLength()/2 * sqrt(epsilon/K))); clout << "uMaxTheo=" << uMaxTheo << "; uMaxMeas=" << uMaxMeas << "; uCentre=" << uCentre[0] << std::endl; gplot_uCentre.setData( converter.getPhysTime( iT ), uCentre[0], "Centre velocity", "bottom right" ); gplot_uCentre.writePNG( iT, maxPhysT ); } } int main(int argc, char* argv[]) { /// === 1st Step: Initialization === olbInit(&argc, &argv); singleton::directories().setOutputDir("./tmp/"); OstreamManager clout(std::cout,"main"); // display messages from every single mpi process //clout.setMultiOutput(true); // Parameters for the simulation setup int nx; // length of the channel int ny; // height of the channel int N; // resolution of the model T tau; // Relaxation time T Re; // Reynolds number T Da; // Darcy number T epsilon; // Porosity (non-dimensional) T K; // Permeability (SI units) T maxPhysT; // max. simulation time in s, SI unit int numOfIterations; // number of iterations reported in paraview-Gnuplot. T residuum; string fName("input.xml"); XMLreader config(fName); config["setup"]["nx"].read(nx); config["setup"]["ny"].read(ny); config["setup"]["tau"].read(tau); config["setup"]["N"].read(N); config["setup"]["Da"].read(Da); config["setup"]["Re"].read(Re); config["porous"]["epsilon"].read(epsilon); config["porous"]["K"].read(K); config["time"]["maxPhysT"].read(maxPhysT); config["time"]["numOfIterations"].read(numOfIterations); config["convergence"]["residuum"].read(residuum); T charL = sqrt(K/Da); T lx = nx*charL; T ly = ny*charL; //T latticeU = Re*(tau-(T).5)/((T)3*N); T charU = (T)1.; T bodyForceValue = charU*charU*charL / ( Re*K*((T)1. - (T)1./cosh(charL/(T)2 * sqrt(epsilon/K))) ); T nu = bodyForceValue*K/charU*((T)1. - (T)1./cosh(charL/(T)2 * sqrt(epsilon/K))); UnitConverterFromResolutionAndRelaxationTime const converter( int {N}, // resolution: number of voxels per charPhysL (T) tau, // latticeRelaxationTime: relaxation time, have to be greater than 0.5! (T) charL, // charPhysLength: reference length of simulation geometry (T) charU, // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__ (T) nu, // physViscosity: physical kinematic viscosity in __m^2 / s__ (T) 1.0 // physDensity: physical density in __kg / m^3__ ); // Prints the converter log as console output converter.print(); // Writes the converter log in a file converter.write("porousPoiseuille2d"); /// === 2nd Step: Prepare Geometry === std::vector extend(2,T()); extend[0] = lx; extend[1] = ly; std::vector origin(2,T()); IndicatorCuboid2D cuboid(extend, origin); /// Instantiation of a cuboidGeometry with weights #ifdef PARALLEL_MODE_MPI const int noOfCuboids = singleton::mpi().getSize(); #else const int noOfCuboids = 7; #endif CuboidGeometry2D cuboidGeometry(cuboid, converter.getPhysDeltaX(), noOfCuboids); /// Periodic boundaries in x-direction cuboidGeometry.setPeriodicity(true, false); /// Instantiation of a loadBalancer HeuristicLoadBalancer loadBalancer(cuboidGeometry); /// Instantiation of a superGeometry SuperGeometry2D superGeometry(cuboidGeometry, loadBalancer, 2); prepareGeometry(converter, lx, ly, superGeometry); /// === 3rd Step: Prepare Lattice === SuperLattice2D sLattice(superGeometry); DYNAMICS bulkDynamics ( converter.getLatticeRelaxationFrequency(), instances::getBulkMomenta() ); SuperGuoZhaoInstantiator2D > sGuoZhaoInstantiator(sLattice); // choose between local and non-local boundary condition sOnLatticeBoundaryCondition2D sBoundaryCondition(sLattice); createInterpBoundaryCondition2D > (sBoundaryCondition); prepareLattice(converter, lx, ly, epsilon, K, bodyForceValue, sLattice, bulkDynamics, sBoundaryCondition, sGuoZhaoInstantiator, superGeometry); SuperExternal2D externalForce(superGeometry, sLattice, 2); SuperExternal2D externalEpsilon(superGeometry, sLattice, 2); SuperExternal2D externalK(superGeometry, sLattice, 2); SuperExternal2D externalNu(superGeometry, sLattice, 2); SuperExternal2D externalBodyForce(superGeometry, sLattice, 2); /// === 4th Step: Main Loop with Timer === clout << "starting simulation..." << endl; Timer timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel() ); util::ValueTracer converge( converter.getLatticeTime(maxPhysT/numOfIterations), residuum ); timer.start(); for (int iT = 0; iT < converter.getLatticeTime(maxPhysT); ++iT) { if ( converge.hasConverged() ) { clout << "Simulation converged." << endl; getResults(sLattice, bulkDynamics, converter, lx, ly, bodyForceValue, K, converter.getPhysViscosity(), epsilon, maxPhysT, iT, numOfIterations, superGeometry, timer, converge.hasConverged() ); break; } /// === 5th Step: Definition of Initial and Boundary Conditions === // in this application no boundary conditions have to be adjusted /// === 6th Step: Collide and Stream Execution === sLattice.collideAndStream(); externalForce.communicate(); externalEpsilon.communicate(); externalK.communicate(); externalNu.communicate(); externalBodyForce.communicate(); /// === 7th Step: Computation and Output of the Results === getResults(sLattice, bulkDynamics, converter, lx, ly, bodyForceValue, K, converter.getPhysViscosity(), epsilon, maxPhysT, iT, numOfIterations, superGeometry, timer, converge.hasConverged() ); converge.takeValue( sLattice.getStatistics().getAverageEnergy(), true ); } timer.stop(); timer.printSummary(); }