/* Lattice Boltzmann sample, written in C++, using the OpenLB
* library
*
* Copyright (C) 2008 Orestis Malaspinas
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/* rayleighBenard2d.cpp:
* Rayleigh-Benard convection rolls in 2D, simulated with
* the thermal LB model by Z. Guo e.a., between a hot plate at
* the bottom and a cold plate at the top.
*/
#include "olb2D.h"
#include "olb2D.hh" // use only generic version!
#include
#include
#include
#include
#include
using namespace olb;
using namespace olb::descriptors;
using namespace olb::graphics;
using namespace std;
typedef double T;
#define NSDESCRIPTOR D2Q9
#define TDESCRIPTOR D2Q5
// #define TemperatureBoundary
// #define RegularizedTemperatureBoundary
#define RegularizedHeatFluxBoundary
// const int maxIter = 1000000;
// const int saveIter = 5000;
// Parameters for the simulation setup
const T lx = 1.; // length of the channel
const T ly = 1.; // height of the channel
int N = 20; // resolution of the model
T tau = 1.; // relaxation time
const T Re = 20.; // Reynolds number
const T Ra = 100.; // Rayleigh number
const T Pr = 0.71; // Prandtl number
const T maxPhysT = 1e4; // max. simulation time in s, SI unit
const T epsilon = 1.e-7; // precision of the convergence (residuum)
const T Tcold = 273.15;
const T Thot = 274.15;
int iT;
// analytical solution from point light source in infinte domain
// appliacation from R3 to R1.
// effective for x in R3, only the distance to (0,0) is needed.
// documentation e.g. Biomedical Optics, Lihong V. Wang Hsin-I Wu
template
class AnalyticalVelocityPorousPlate2D : public AnalyticalF2D {
private:
T _Re;
T _u0;
T _v0;
T _ly;
public:
AnalyticalVelocityPorousPlate2D(T Re, T u0, T v0, T ly) : AnalyticalF2D(2),
_Re(Re), _u0(u0), _v0(v0), _ly(ly)
{
this->getName() = "AnalyticalVelocityPorousPlate2D";
};
bool operator()(T output[2], const S x[2])
{
output[0] = _u0*((exp(_Re* x[1] / _ly) - 1) / (exp(_Re) - 1));
output[1] = _v0;
return true;
};
};
template
class AnalyticalTemperaturePorousPlate2D : public AnalyticalF2D {
private:
T _Re;
T _Pr;
T _ly;
T _T0;
T _deltaT;
public:
AnalyticalTemperaturePorousPlate2D(T Re, T Pr, T ly, T T0, T deltaT) : AnalyticalF2D(1),
_Re(Re), _Pr(Pr), _ly(ly), _T0(T0), _deltaT(deltaT)
{
this->getName() = "AnalyticalTemperaturePorousPlate2D";
};
bool operator()(T output[1], const S x[2])
{
output[0] = _T0 + _deltaT*((exp(_Pr*_Re*x[1] / _ly) - 1) / (exp(_Pr*_Re) - 1));
return true;
};
};
template
class AnalyticalHeatFluxPorousPlate2D : public AnalyticalF2D {
private:
T _Re;
T _Pr;
T _deltaT;
T _ly;
T _lambda;
public:
AnalyticalHeatFluxPorousPlate2D(T Re, T Pr, T deltaT, T ly,T lambda) : AnalyticalF2D(2),
_Re(Re), _Pr(Pr), _deltaT(deltaT), _ly(ly), _lambda(lambda)
{
this->getName() = "AnalyticalHeatFluxPorousPlate2D";
};
bool operator()(T output[2], const S x[2])
{
output[0] = 0;
output[1] = - _lambda * _Re * _Pr * _deltaT / _ly * (exp(_Pr * _Re * x[1] / _ly))/(exp(_Pr * _Re) - 1);
return true;
};
};
void error( SuperGeometry2D& superGeometry,
SuperLattice2D& NSlattice,
SuperLattice2D& ADlattice,
ThermalUnitConverter const& converter,
T Re )
{
OstreamManager clout( std::cout, "error" );
int input[1] = { };
T result[1] = { };
auto indicatorF = superGeometry.getMaterialIndicator({1, 2, 3});
T u_Re = Re * converter.getPhysViscosity() / converter.getCharPhysLength();
AnalyticalVelocityPorousPlate2D uSol(Re, converter.getCharPhysVelocity(), u_Re, converter.getCharPhysLength());
SuperLatticePhysVelocity2D u(NSlattice,converter);
SuperAbsoluteErrorL2Norm2D absVelocityErrorNormL2(u, uSol, indicatorF);
absVelocityErrorNormL2(result, input);
clout << "velocity-L2-error(abs)=" << result[0];
SuperRelativeErrorL2Norm2D relVelocityErrorNormL2(u, uSol, indicatorF);
relVelocityErrorNormL2(result, input);
clout << "; velocity-L2-error(rel)=" << result[0] << std::endl;
AnalyticalTemperaturePorousPlate2D tSol(Re, Pr, converter.getCharPhysLength(), converter.getCharPhysLowTemperature(), converter.getCharPhysTemperatureDifference());
SuperLatticePhysTemperature2D t(ADlattice,converter);
SuperAbsoluteErrorL2Norm2D absTemperatureErrorNormL2(t, tSol, indicatorF);
absTemperatureErrorNormL2(result, input);
clout << "temperature-L2-error(abs)=" << result[0];
SuperRelativeErrorL2Norm2D relTemperatureErrorNormL2(t, tSol, indicatorF);
relTemperatureErrorNormL2(result, input);
clout << "; temperature-L2-error(rel)=" << result[0] << std::endl;
AnalyticalHeatFluxPorousPlate2D HeatFluxSol(Re, Pr, converter.getCharPhysTemperatureDifference(), converter.getCharPhysLength(), converter.getThermalConductivity());
SuperLatticePhysHeatFlux2D HeatFlux(ADlattice,converter);
SuperAbsoluteErrorL2Norm2D absHeatFluxErrorNormL2(HeatFlux, HeatFluxSol, indicatorF);
absHeatFluxErrorNormL2(result, input);
clout << "heatFlux-L2-error(abs)=" << result[0];
SuperRelativeErrorL2Norm2D relHeatFluxErrorNormL2(HeatFlux, HeatFluxSol, indicatorF);
relHeatFluxErrorNormL2(result, input);
clout << "; heatFlux-L2-error(rel)=" << result[0] << std::endl;
}
/// Stores geometry information in form of material numbers
void prepareGeometry(SuperGeometry2D& superGeometry,
ThermalUnitConverter const& converter)
{
OstreamManager clout(std::cout,"prepareGeometry");
clout << "Prepare Geometry ..." << std::endl;
superGeometry.rename(0,2);
superGeometry.rename(2,1,0,1);
std::vector extend( 2, T(0) );
extend[0] = lx+2*converter.getPhysLength(1);
extend[1] = converter.getPhysLength(1);
std::vector origin( 2, T(0) );
origin[0] = -converter.getPhysLength(1);
IndicatorCuboid2D bottom(extend, origin);
/// Set material number for bottom
superGeometry.rename(2,3,1,bottom);
/// Removes all not needed boundary voxels outside the surface
superGeometry.clean();
/// Removes all not needed boundary voxels inside the surface
superGeometry.innerClean();
superGeometry.checkForErrors();
superGeometry.print();
clout << "Prepare Geometry ... OK" << std::endl;
}
void prepareLattice( ThermalUnitConverter const& converter,
SuperLattice2D& NSlattice,
SuperLattice2D& ADlattice,
Dynamics &bulkDynamics,
Dynamics& advectionDiffusionBulkDynamics,
sOnLatticeBoundaryCondition2D& NSboundaryCondition,
sOnLatticeBoundaryCondition2D& TboundaryCondition,
SuperGeometry2D& superGeometry )
{
OstreamManager clout(std::cout,"prepareLattice");
T Tomega = converter.getLatticeThermalRelaxationFrequency();
T NSomega = converter.getLatticeRelaxationFrequency();
/// define lattice Dynamics
clout << "defining dynamics" << endl;
ADlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics());
NSlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics());
ADlattice.defineDynamics(superGeometry, 1, &advectionDiffusionBulkDynamics);
ADlattice.defineDynamics(superGeometry, 2, &advectionDiffusionBulkDynamics);
ADlattice.defineDynamics(superGeometry, 3, &advectionDiffusionBulkDynamics);
NSlattice.defineDynamics(superGeometry, 1, &bulkDynamics);
NSlattice.defineDynamics(superGeometry, 2, &bulkDynamics);
NSlattice.defineDynamics(superGeometry, 3, &bulkDynamics);
/// sets boundary
NSboundaryCondition.addVelocityBoundary(superGeometry, 2, NSomega);
NSboundaryCondition.addVelocityBoundary(superGeometry, 3, NSomega);
#ifdef TemperatureBoundary
TboundaryCondition.addTemperatureBoundary(superGeometry, 2, Tomega);
TboundaryCondition.addTemperatureBoundary(superGeometry, 3, Tomega);
#endif
#ifdef RegularizedTemperatureBoundary
TboundaryCondition.addRegularizedTemperatureBoundary(superGeometry, 2, Tomega);
TboundaryCondition.addRegularizedTemperatureBoundary(superGeometry, 3, Tomega);
#endif
#ifdef RegularizedHeatFluxBoundary
T heatFlux[2];
T input[2] = {0.,1.};
AnalyticalHeatFluxPorousPlate2D HeatFluxSol(Re, Pr, converter.getCharPhysTemperatureDifference(), converter.getCharPhysLength(), converter.getThermalConductivity());
HeatFluxSol(heatFlux, input);
T temp = converter.getLatticeSpecificHeatCapacity(converter.getPhysSpecificHeatCapacity())*(converter.getLatticeThermalRelaxationTime() - 0.5) / converter.getLatticeThermalRelaxationTime();
heatFlux[0] = converter.getLatticeHeatFlux(heatFlux[0]) / temp;
heatFlux[1] = converter.getLatticeHeatFlux(heatFlux[1]) / temp;
TboundaryCondition.addRegularizedHeatFluxBoundary(superGeometry, 2, Tomega, heatFlux);
TboundaryCondition.addRegularizedTemperatureBoundary(superGeometry, 3, Tomega);
#endif
}
void setBoundaryValues(ThermalUnitConverter const& converter,
SuperLattice2D& NSlattice,
SuperLattice2D& ADlattice,
int iT, SuperGeometry2D& superGeometry)
{
if (iT == 0) {
// typedef advectionDiffusionLbHelpers TlbH;
/// for each material set the defineRhoU and the Equilibrium
std::vector zero(2,T());
AnalyticalConst2D u(zero);
AnalyticalConst2D rho(1.);
AnalyticalConst2D force(zero);
T u_Re = converter.getLatticeVelocity( Re * converter.getPhysViscosity() / converter.getCharPhysLength() );
AnalyticalConst2D u_top(converter.getCharLatticeVelocity(), u_Re);
AnalyticalConst2D u_bot(0.0, u_Re);
NSlattice.defineRhoU(superGeometry, 1, rho, u);
NSlattice.iniEquilibrium(superGeometry, 1, rho, u);
NSlattice.defineField(superGeometry, 1, force);
NSlattice.defineRhoU(superGeometry, 2, rho, u_top);
NSlattice.iniEquilibrium(superGeometry, 2, rho, u_top);
NSlattice.defineField(superGeometry, 2, force);
NSlattice.defineRhoU(superGeometry, 3, rho, u_bot);
NSlattice.iniEquilibrium(superGeometry, 3, rho, u_bot);
NSlattice.defineField(superGeometry, 3, force);
AnalyticalConst2D Cold(converter.getLatticeTemperature(Tcold));
AnalyticalConst2D Hot(converter.getLatticeTemperature(Thot));
ADlattice.defineRho(superGeometry, 1, Cold);
ADlattice.iniEquilibrium(superGeometry, 1, Cold, u);
ADlattice.defineField(superGeometry, 1, u);
ADlattice.defineRhoU(superGeometry, 2, Hot, u_top);
ADlattice.iniEquilibrium(superGeometry, 2, Hot, u_top);
ADlattice.defineField(superGeometry, 2, u);
ADlattice.defineRhoU(superGeometry, 3, Cold, u_bot);
ADlattice.iniEquilibrium(superGeometry, 3, Cold, u_bot);
ADlattice.defineField(superGeometry, 3, u);
/// Make the lattice ready for simulation
NSlattice.initialize();
ADlattice.initialize();
}
}
void getResults(ThermalUnitConverter const& converter,
SuperLattice2D& NSlattice,
SuperLattice2D& ADlattice, int iT,
SuperGeometry2D& superGeometry,
Timer& timer,
bool converged)
{
OstreamManager clout(std::cout,"getResults");
SuperVTMwriter2D vtkWriter("thermalPorousPlate2d");
SuperLatticeGeometry2D geometry2(NSlattice, superGeometry);
SuperLatticePhysVelocity2D velocity(NSlattice, converter);
SuperLatticePhysPressure2D pressure(NSlattice, converter);
SuperLatticePhysTemperature2D temperature(ADlattice, converter);
SuperLatticePhysHeatFlux2D heatflux(ADlattice, converter);
T u_Re = Re * converter.getPhysViscosity() / converter.getCharPhysLength();
AnalyticalVelocityPorousPlate2D uSol(Re, converter.getCharPhysVelocity(), u_Re, converter.getCharPhysLength());
SuperLatticeFfromAnalyticalF2D uSolLattice(uSol,NSlattice);
AnalyticalTemperaturePorousPlate2D TSol(Re, Pr, converter.getCharPhysLength(), converter.getCharPhysLowTemperature(), converter.getCharPhysTemperatureDifference());
SuperLatticeFfromAnalyticalF2D TSolLattice(TSol,ADlattice);
AnalyticalHeatFluxPorousPlate2D HeatFluxSol(Re, Pr, converter.getCharPhysTemperatureDifference(), converter.getCharPhysLength(), converter.getThermalConductivity());
SuperLatticeFfromAnalyticalF2D HeatFluxSolLattice(HeatFluxSol,ADlattice);
vtkWriter.addFunctor( geometry2 );
vtkWriter.addFunctor( pressure );
vtkWriter.addFunctor( velocity );
vtkWriter.addFunctor( temperature );
vtkWriter.addFunctor( heatflux );
vtkWriter.addFunctor( uSolLattice );
vtkWriter.addFunctor( TSolLattice );
vtkWriter.addFunctor( HeatFluxSolLattice );
const int vtkIter = converter.getLatticeTime(10.);
if (iT == 0) {
/// Writes the converter log file
// writeLogFile(converter,"thermalPorousPlate2d");
T tmpIn[2] = {0.,1.};
T tmpOut[2];
HeatFluxSol(tmpOut,tmpIn);
clout << converter.getLatticeHeatFlux(tmpOut[0]) << " " << converter.getLatticeHeatFlux(tmpOut[1]) << endl;
clout << tmpOut[0] << " " << tmpOut[1] << endl;
/// Writes the geometry, cuboid no. and rank no. as vti file for visualization
SuperLatticeGeometry2D geometry(NSlattice, superGeometry);
SuperLatticeCuboid2D cuboid(NSlattice);
SuperLatticeRank2D rank(NSlattice);
vtkWriter.write(geometry);
vtkWriter.write(cuboid);
vtkWriter.write(rank);
vtkWriter.createMasterFile();
}
/// Writes the VTK files
if (iT%vtkIter == 0 || converged) {
NSlattice.getStatistics().print(iT,converter.getPhysTime(iT));
timer.print(iT);
error(superGeometry, NSlattice, ADlattice, converter, Re);
cout << endl << endl;
vtkWriter.write(iT);
///writes Jpeg
//SuperEuklidNorm2D normVel(velocity);
BlockReduction2D2D planeReduction( temperature, 600, BlockDataSyncMode::ReduceOnly );
// write output of velocity as JPEG
heatmap::plotParam jpeg_Param;
jpeg_Param.maxValue = Thot;
jpeg_Param.minValue = Tcold;
heatmap::write(planeReduction, iT, jpeg_Param);
}
}
int main(int argc, char *argv[])
{
/// === 1st Step: Initialization ===
OstreamManager clout(std::cout,"main");
olbInit(&argc, &argv);
singleton::directories().setOutputDir("./tmp/");
if (argc >= 2) {
N = atoi(argv[1]);
}
if (argc == 3) {
tau = atof(argv[2]);
}
ThermalUnitConverter const converter(
(T) 1.0 / N, // physDeltaX
(T) 1.0 / N * 1.0 / 1e-3 * (tau - 0.5) / 3 / N, // physDeltaT
(T) 1.0, // charPhysLength
(T) sqrt( 9.81 * Ra * 1e-3 * 1e-3 / Pr / 9.81 / (Thot - Tcold) / pow(1.0, 3) * (Thot - Tcold) * 1.0 ), // charPhysVelocity
(T) 1e-3, // physViscosity
(T) 1.0, // physDensity
(T) 0.03, // physThermalConductivity
(T) Pr * 0.03 / 1e-3 / 1.0, // physSpecificHeatCapacity
(T) Ra * 1e-3 * 1e-3 / Pr / 9.81 / (Thot - Tcold) / pow(1.0, 3), // physThermalExpansionCoefficient
(T) Tcold, // charPhysLowTemperature
(T) Thot // charPhysHighTemperature
);
converter.print();
/// === 2nd Step: Prepare Geometry ===
std::vector extend(2,T());
extend[0] = lx;
extend[1] = ly;
std::vector origin(2,T());
IndicatorCuboid2D cuboid(extend, origin);
/// Instantiation of a cuboidGeometry with weights
#ifdef PARALLEL_MODE_MPI
const int noOfCuboids = singleton::mpi().getSize();
#else
const int noOfCuboids = 1;
#endif
CuboidGeometry2D cuboidGeometry(cuboid, converter.getPhysDeltaX(), noOfCuboids);
cuboidGeometry.setPeriodicity(true, false);
/// Instantiation of a loadBalancer
HeuristicLoadBalancer loadBalancer(cuboidGeometry);
/// Instantiation of a superGeometry
SuperGeometry2D superGeometry(cuboidGeometry, loadBalancer, 2);
prepareGeometry(superGeometry, converter);
/// === 3rd Step: Prepare Lattice ===
SuperLattice2D ADlattice(superGeometry);
SuperLattice2D NSlattice(superGeometry);
sOnLatticeBoundaryCondition2D NSboundaryCondition(NSlattice);
createLocalBoundaryCondition2D(NSboundaryCondition);
sOnLatticeBoundaryCondition2D TboundaryCondition(ADlattice);
createAdvectionDiffusionBoundaryCondition2D(TboundaryCondition);
ForcedBGKdynamics NSbulkDynamics(
converter.getLatticeRelaxationFrequency(),
instances::getBulkMomenta());
BGKdynamics TbulkDynamics (
converter.getLatticeThermalRelaxationFrequency(),
instances::getAdvectionDiffusionBulkMomenta()
);
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!//
// This coupling must be necessarily be put on the Navier-Stokes lattice!!
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!//
std::vector dir{0.0, 1.0};
T boussinesqForcePrefactor = 9.81 / converter.getConversionFactorVelocity() * converter.getConversionFactorTime() *
converter.getCharPhysTemperatureDifference() * converter.getPhysThermalExpansionCoefficient();
NavierStokesAdvectionDiffusionCouplingGenerator2D
coupling(0, converter.getLatticeLength(lx), 0, converter.getLatticeLength(ly),
boussinesqForcePrefactor, converter.getLatticeTemperature(Tcold), 1., dir);
NSlattice.addLatticeCoupling(coupling, ADlattice);
prepareLattice(converter,
NSlattice, ADlattice,
NSbulkDynamics, TbulkDynamics,
NSboundaryCondition, TboundaryCondition, superGeometry );
/// === 4th Step: Main Loop with Timer ===
Timer timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel() );
timer.start();
util::ValueTracer converge(converter.getLatticeTime(1.0),epsilon);
for (iT = 0; iT < converter.getLatticeTime(maxPhysT); ++iT) {
if (converge.hasConverged()) {
clout << "Simulation converged." << endl;
getResults(converter, NSlattice, ADlattice, iT, superGeometry, timer, converge.hasConverged());
break;
}
/// === 5th Step: Definition of Initial and Boundary Conditions ===
setBoundaryValues(converter, NSlattice, ADlattice, iT, superGeometry);
/// === 6th Step: Collide and Stream Execution ===
NSlattice.collideAndStream();
NSlattice.executeCoupling();
ADlattice.collideAndStream();
/// === 7th Step: Computation and Output of the Results ===
getResults(converter, NSlattice, ADlattice, iT, superGeometry, timer, converge.hasConverged());
converge.takeValue(NSlattice.getStatistics().getAverageEnergy());
}
timer.stop();
timer.printSummary();
}