/* Lattice Boltzmann sample, written in C++, using the OpenLB
* library
*
* Copyright (C) 2008 Orestis Malaspinas
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/* rayleighBenard2d.cpp:
* Rayleigh-Benard convection rolls in 2D, simulated with
* the thermal LB model by Z. Guo e.a., between a hot plate at
* the bottom and a cold plate at the top.
*/
#include "olb3D.h"
#include "olb3D.hh" // use only generic version!
#include
#include
#include
#include
#include
using namespace olb;
using namespace olb::descriptors;
using namespace olb::graphics;
using namespace std;
typedef double T;
#define NSDESCRIPTOR D3Q19
#define TDESCRIPTOR D3Q7
// const int maxIter = 1000000;
// const int saveIter = 5000;
// Parameters for the simulation setup
const T lx = 1.0; // length of the channel
const T ly = 1.0; // height of the channel
T lz = 1.0;
int N = 20; // resolution of the model
T tau = 1.; // relaxation time
const T Re = 5.; // Reynolds number
const T Ra = 100.; // Rayleigh number
const T Pr = 0.71; // Prandtl number
const T maxPhysT = 1e4; // max. simulation time in s, SI unit
const T epsilon = 1.e-7; // precision of the convergence (residuum)
const T Tcold = 273.15;
const T Thot = 274.15;
template
class AnalyticalVelocityPorousPlate3D : public AnalyticalF3D {
private:
T _Re;
T _u0;
T _v0;
T _ly;
public:
AnalyticalVelocityPorousPlate3D(T Re, T u0, T v0, T ly) : AnalyticalF3D(3),
_Re(Re), _u0(u0), _v0(v0), _ly(ly)
{
this->getName() = "AnalyticalVelocityPorousPlate3D";
};
bool operator()(T output[3], const S x[3])
{
output[0] = _u0*((exp(_Re* x[1] / _ly) - 1) / (exp(_Re) - 1));
output[1] = _v0;
output[2] = 0.0;
return true;
};
};
template
class AnalyticalTemperaturePorousPlate3D : public AnalyticalF3D {
private:
T _Re;
T _Pr;
T _ly;
T _T0;
T _deltaT;
public:
AnalyticalTemperaturePorousPlate3D(T Re, T u0, T ly, T T0, T deltaT) : AnalyticalF3D(1),
_Re(Re), _Pr(Pr), _ly(ly), _T0(T0), _deltaT(deltaT)
{
this->getName() = "AnalyticalTemperaturePorousPlate3D";
};
bool operator()(T output[1], const S x[3])
{
output[0] = _T0 + _deltaT*((exp(_Pr*_Re*x[1] / _ly) - 1) / (exp(_Pr*_Re) - 1));
return true;
};
};
template
class AnalyticalHeatFluxPorousPlate3D : public AnalyticalF3D {
private:
T _Re;
T _Pr;
T _deltaT;
T _ly;
T _lambda;
public:
AnalyticalHeatFluxPorousPlate3D(T Re, T Pr, T deltaT, T ly,T lambda) : AnalyticalF3D(3),
_Re(Re), _Pr(Pr), _deltaT(deltaT), _ly(ly), _lambda(lambda)
{
this->getName() = "AnalyticalHeatFluxPorousPlate3D";
};
bool operator()(T output[3], const S x[3])
{
output[0] = 0;
output[1] = - _lambda * _Re * _Pr * _deltaT / _ly * (exp(_Pr * _Re * x[1] / _ly))/(exp(_Pr * _Re) - 1);
output[2] = 0;
return true;
};
};
void error( SuperGeometry3D& superGeometry,
SuperLattice3D& NSlattice,
SuperLattice3D& ADlattice,
ThermalUnitConverter const& converter,
T Re )
{
OstreamManager clout( std::cout, "error" );
int input[1] = { };
T result[1] = { };
auto indicatorF = superGeometry.getMaterialIndicator(1);
T u_Re = Re * converter.getPhysViscosity() / converter.getCharPhysLength();
AnalyticalVelocityPorousPlate3D uSol(Re,converter.getCharPhysVelocity(), u_Re, converter.getCharPhysLength());
SuperLatticePhysVelocity3D u(NSlattice,converter);
SuperAbsoluteErrorL2Norm3D absVelocityErrorNormL2(u, uSol, indicatorF);
absVelocityErrorNormL2(result, input);
clout << "velocity-L2-error(abs)=" << result[0];
SuperRelativeErrorL2Norm3D relVelocityErrorNormL2(u, uSol, indicatorF);
relVelocityErrorNormL2(result, input);
clout << "; velocity-L2-error(rel)=" << result[0] << std::endl;
AnalyticalTemperaturePorousPlate3D tSol(Re, Pr, converter.getCharPhysLength(), converter.getCharPhysLowTemperature(), converter.getCharPhysTemperatureDifference());
SuperLatticePhysTemperature3D t(ADlattice, converter);
SuperAbsoluteErrorL2Norm3D absTemperatureErrorNormL2(t, tSol, indicatorF);
absTemperatureErrorNormL2(result, input);
clout << "temperature-L2-error(abs)=" << result[0];
SuperRelativeErrorL2Norm3D relTemperatureErrorNormL2(t, tSol, indicatorF);
relTemperatureErrorNormL2(result, input);
clout << "; temperature-L2-error(rel)=" << result[0] << std::endl;
AnalyticalHeatFluxPorousPlate3D HeatFluxSol(Re, Pr, converter.getCharPhysTemperatureDifference(), converter.getCharPhysLength(), converter.getThermalConductivity());
SuperLatticePhysHeatFlux3D HeatFlux(ADlattice,converter);
SuperAbsoluteErrorL2Norm3D absHeatFluxErrorNormL2(HeatFlux, HeatFluxSol, indicatorF);
absHeatFluxErrorNormL2(result, input);
clout << "heatFlux-L2-error(abs)=" << result[0];
SuperRelativeErrorL2Norm3D relHeatFluxErrorNormL2(HeatFlux, HeatFluxSol, indicatorF);
relHeatFluxErrorNormL2(result, input);
clout << "; heatFlux-L2-error(rel)=" << result[0] << std::endl;
}
/// Stores geometry information in form of material numbers
void prepareGeometry(SuperGeometry3D& superGeometry,
ThermalUnitConverter const&converter)
{
OstreamManager clout(std::cout,"prepareGeometry");
clout << "Prepare Geometry ..." << std::endl;
superGeometry.rename(0,2);
superGeometry.rename(2,1,0,1,0);
//superGeometry.clean();
std::vector extend( 3, T(0) );
extend[0] = lx;
extend[1] = converter.getPhysLength(1);
extend[2] = lz;
std::vector origin( 3, T(0) );
IndicatorCuboid3D bottom(extend, origin);
/// Set material number for bottom
superGeometry.rename(2,3,1,bottom);
/// Removes all not needed boundary voxels outside the surface
superGeometry.clean();
/// Removes all not needed boundary voxels inside the surface
superGeometry.innerClean();
superGeometry.checkForErrors();
superGeometry.print();
clout << "Prepare Geometry ... OK" << std::endl;
}
void prepareLattice( ThermalUnitConverter const& converter,
SuperLattice3D& NSlattice,
SuperLattice3D& ADlattice,
Dynamics &bulkDynamics,
Dynamics& advectionDiffusionBulkDynamics,
sOnLatticeBoundaryCondition3D& NSboundaryCondition,
sOnLatticeBoundaryCondition3D& TboundaryCondition,
SuperGeometry3D& superGeometry )
{
OstreamManager clout(std::cout,"prepareLattice");
T Tomega = converter.getLatticeThermalRelaxationFrequency();
T NSomega = converter.getLatticeRelaxationFrequency();
/// define lattice Dynamics
clout << "defining dynamics" << endl;
ADlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics());
NSlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics());
ADlattice.defineDynamics(superGeometry.getMaterialIndicator({1, 2, 3}), &advectionDiffusionBulkDynamics);
NSlattice.defineDynamics(superGeometry.getMaterialIndicator({1, 2, 3}), &bulkDynamics);
/// sets boundary
NSboundaryCondition.addVelocityBoundary(superGeometry.getMaterialIndicator({2, 3}), NSomega);
TboundaryCondition.addTemperatureBoundary(superGeometry.getMaterialIndicator({2, 3}), Tomega);
}
void setBoundaryValues(ThermalUnitConverter const& converter,
SuperLattice3D& NSlattice,
SuperLattice3D& ADlattice,
int iT, SuperGeometry3D& superGeometry)
{
if (iT == 0) {
// typedef advectionDiffusionLbHelpers TlbH;
/// for each material set the defineRhoU and the Equilibrium
std::vector zero(3,T());
AnalyticalConst3D u(zero);
AnalyticalConst3D rho(1.);
AnalyticalConst3D force(zero);
T u_Re = converter.getLatticeVelocity( Re * converter.getPhysViscosity() / converter.getCharPhysLength() );
AnalyticalConst3D u_top(converter.getCharLatticeVelocity(), u_Re, 0.0);
AnalyticalConst3D u_bot(0.0, u_Re, 0.0);
NSlattice.defineRhoU(superGeometry, 1, rho, u);
NSlattice.iniEquilibrium(superGeometry, 1, rho, u);
NSlattice.defineField(superGeometry, 1, force);
NSlattice.defineRhoU(superGeometry, 2, rho, u_top);
NSlattice.iniEquilibrium(superGeometry, 2, rho, u_top);
NSlattice.defineField(superGeometry, 2, force);
NSlattice.defineRhoU(superGeometry, 3, rho, u_bot);
NSlattice.iniEquilibrium(superGeometry, 3, rho, u_bot);
NSlattice.defineField(superGeometry, 3, force);
AnalyticalConst3D Cold(converter.getLatticeTemperature(Tcold));
AnalyticalConst3D Hot(converter.getLatticeTemperature(Thot));
ADlattice.defineRho(superGeometry, 1, Cold);
ADlattice.iniEquilibrium(superGeometry, 1, Cold, u);
ADlattice.defineField(superGeometry, 1, u);
ADlattice.defineRho(superGeometry, 2, Hot);
ADlattice.iniEquilibrium(superGeometry, 2, Hot, u);
ADlattice.defineField(superGeometry, 2, u);
ADlattice.defineRho(superGeometry, 3, Cold);
ADlattice.iniEquilibrium(superGeometry, 3, Cold, u);
ADlattice.defineField(superGeometry, 3, u);
/// Make the lattice ready for simulation
NSlattice.initialize();
ADlattice.initialize();
}
}
void getResults(ThermalUnitConverter const& converter,
SuperLattice3D& NSlattice,
SuperLattice3D& ADlattice, int iT,
SuperGeometry3D& superGeometry,
Timer& timer,
bool converged)
{
OstreamManager clout(std::cout,"getResults");
SuperVTMwriter3D vtkWriter("thermalPorousPlate3d");
SuperLatticePhysVelocity3D velocity(NSlattice, converter);
SuperLatticePhysPressure3D pressure(NSlattice, converter);
SuperLatticePhysTemperature3D temperature(ADlattice, converter);
AnalyticalHeatFluxPorousPlate3D HeatFluxSol(Re, Pr, converter.getCharPhysTemperatureDifference(), converter.getCharPhysLength(), converter.getThermalConductivity());
SuperLatticePhysHeatFlux3D HeatFlux1(ADlattice,converter);
SuperLatticeFfromAnalyticalF3D HeatFluxSolLattice(HeatFluxSol,ADlattice);
vtkWriter.addFunctor( pressure );
vtkWriter.addFunctor( velocity );
vtkWriter.addFunctor( temperature );
vtkWriter.addFunctor( HeatFlux1 );
vtkWriter.addFunctor( HeatFluxSolLattice );
const int vtkIter = converter.getLatticeTime(100.);
if (iT == 0) {
/// Writes the converter log file
//writeLogFile(converter,"thermalPorousPlate3d");
/// Writes the geometry, cuboid no. and rank no. as vti file for visualization
SuperLatticeGeometry3D geometry(NSlattice, superGeometry);
SuperLatticeCuboid3D cuboid(NSlattice);
SuperLatticeRank3D rank(NSlattice);
vtkWriter.write(geometry);
vtkWriter.write(cuboid);
vtkWriter.write(rank);
vtkWriter.createMasterFile();
}
/// Writes the VTK files
if (iT%vtkIter == 0 || converged) {
NSlattice.getStatistics().print(iT,converter.getPhysTime(iT));
timer.print(iT);
error(superGeometry, NSlattice, ADlattice, converter, Re);
vtkWriter.write(iT);
BlockReduction3D2D planeReduction( temperature, {0,0,1}, 600, BlockDataSyncMode::ReduceOnly );
// write output as JPEG
heatmap::plotParam jpeg_Param;
jpeg_Param.maxValue = Thot;
jpeg_Param.minValue = Tcold;
heatmap::write(planeReduction, iT, jpeg_Param);
/* BlockLatticeReduction3D planeReduction(temperature);
BlockGifWriter gifWriter;
gifWriter.write(planeReduction, iT, "temperature");*/
}
}
int main(int argc, char *argv[])
{
/// === 1st Step: Initialization ===
OstreamManager clout(std::cout,"main");
olbInit(&argc, &argv);
singleton::directories().setOutputDir("./tmp/");
fstream f;
if (argc >= 2) {
N = atoi(argv[1]);
}
if (argc == 3) {
tau = atof(argv[2]);
}
ThermalUnitConverter const converter(
(T) 1.0 / N, // physDeltaX
(T) 1.0 / N * 1.0 / 1e-3 * (tau - 0.5) / 3 / N, // physDeltaT
(T) 1.0, // charPhysLength
(T) sqrt( 9.81 * Ra * 1e-3 * 1e-3 / Pr / 9.81 / (Thot - Tcold) / pow(1.0, 3) * (Thot - Tcold) * 1.0 ), // charPhysVelocity
(T) 1e-3, // physViscosity
(T) 1.0, // physDensity
(T) 0.03, // physThermalConductivity
(T) Pr * 0.03 / 1e-3 / 1.0, // physSpecificHeatCapacity
(T) Ra * 1e-3 * 1e-3 / Pr / 9.81 / (Thot - Tcold) / pow(1.0, 3), // physThermalExpansionCoefficient
(T) Tcold, // charPhysLowTemperature
(T) Thot // charPhysHighTemperature
);
converter.print();
/// === 2nd Step: Prepare Geometry ===
lz = converter.getPhysDeltaX() * 3.; // depth of the channel
std::vector extend(3,T());
extend[0] = lx;
extend[1] = ly;
extend[2] = lz;
std::vector origin(3,T());
IndicatorCuboid3D cuboid(extend, origin);
/// Instantiation of a cuboidGeometry with weights
#ifdef PARALLEL_MODE_MPI
const int noOfCuboids = singleton::mpi().getSize();
#else
const int noOfCuboids = 7;
#endif
CuboidGeometry3D cuboidGeometry(cuboid, converter.getPhysDeltaX(), noOfCuboids);
cuboidGeometry.setPeriodicity(true,false, true);
/// Instantiation of a loadBalancer
HeuristicLoadBalancer loadBalancer(cuboidGeometry);
/// Instantiation of a superGeometry
SuperGeometry3D superGeometry(cuboidGeometry, loadBalancer, 2);
prepareGeometry(superGeometry, converter);
/// === 3rd Step: Prepare Lattice ===
SuperLattice3D ADlattice(superGeometry);
SuperLattice3D NSlattice(superGeometry);
sOnLatticeBoundaryCondition3D NSboundaryCondition(NSlattice);
createLocalBoundaryCondition3D(NSboundaryCondition);
sOnLatticeBoundaryCondition3D TboundaryCondition(ADlattice);
createAdvectionDiffusionBoundaryCondition3D(TboundaryCondition);
ForcedBGKdynamics NSbulkDynamics(
converter.getLatticeRelaxationFrequency(),
instances::getBulkMomenta());
AdvectionDiffusionBGKdynamics TbulkDynamics (
converter.getLatticeThermalRelaxationFrequency(),
instances::getAdvectionDiffusionBulkMomenta()
);
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!//
// This coupling must be necessarily be put on the Navier-Stokes lattice!!
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!//
/* int nx = converter.numCells(lx) + 1;
int ny = converter.numCells(ly) + 1;
int nz = converter.numCells(lz) + 1;
*/
std::vector dir{0.0, 1.0, 0.0};
T boussinesqForcePrefactor = 9.81 / converter.getConversionFactorVelocity() * converter.getConversionFactorTime() *
converter.getCharPhysTemperatureDifference() * converter.getPhysThermalExpansionCoefficient();
NavierStokesAdvectionDiffusionCouplingGenerator3D
coupling(0, converter.getLatticeLength(lx), 0, converter.getLatticeLength(ly), 0, converter.getLatticeLength(lz),
boussinesqForcePrefactor, converter.getLatticeTemperature(Tcold), 1., dir);
NSlattice.addLatticeCoupling(coupling, ADlattice);
prepareLattice(converter,
NSlattice, ADlattice,
NSbulkDynamics, TbulkDynamics,
NSboundaryCondition, TboundaryCondition, superGeometry );
/// === 4th Step: Main Loop with Timer ===
Timer timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel() );
timer.start();
util::ValueTracer converge(converter.getLatticeTime(1.0),epsilon);
for (int iT = 0; iT < converter.getLatticeTime(maxPhysT); ++iT) {
if (converge.hasConverged()) {
clout << "Simulation converged." << endl;
getResults(converter, NSlattice, ADlattice, iT, superGeometry, timer, converge.hasConverged());
break;
}
/// === 5th Step: Definition of Initial and Boundary Conditions ===
setBoundaryValues(converter, NSlattice, ADlattice, iT, superGeometry);
/// === 6th Step: Collide and Stream Execution ===
NSlattice.collideAndStream();
NSlattice.executeCoupling();
ADlattice.collideAndStream();
/// === 7th Step: Computation and Output of the Results ===
getResults(converter, NSlattice, ADlattice, iT, superGeometry, timer, converge.hasConverged());
converge.takeValue(ADlattice.getStatistics().getAverageEnergy());
}
timer.stop();
timer.printSummary();
}