/* Lattice Boltzmann sample, written in C++, using the OpenLB
* library
*
* Copyright (C) 2006, 2007, 2008 Jonas Latt, Orestis Malaspina, Andrea Parmigiani
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/* rayleighBenard3d.cpp:
* Rayleigh-Benard convection rolls in 3D, simulated with
* the thermal LB model by Z. Guo e.a., between a hot plate at
* the bottom and a cold plate at the top.
*/
#include "olb3D.h"
#include "olb3D.hh" // use only generic version!
using namespace olb;
using namespace olb::descriptors;
using namespace olb::graphics;
using namespace std;
typedef double T;
#define TDESCRIPTOR D3Q7
#define NSDESCRIPTOR D3Q19
// Parameters for the simulation setup
const T lx = 0.2; // length of the channel
const T ly = 0.1; // height of the channel
const T lz = 0.1; // width of the channel
const int N = 40; // resolution of the model
const T Ra = 1e6; // Rayleigh number
const T Pr = 0.71; // Prandtl number
const T maxPhysT = 1000.; // max. simulation time in s, SI unit
const T epsilon = 1.e-5; // precision of the convergence (residuum)
const T Thot = 274.15; // temperature of the lower wall in Kelvin
const T Tcold = 273.15; // temperature of the fluid in Kelvin
const T Tperturb = 1./5. * Tcold + 4./5. * Thot; // temperature of the perturbation
void prepareGeometry(SuperGeometry3D& superGeometry,
ThermalUnitConverter &converter)
{
OstreamManager clout(std::cout,"prepareGeometry");
clout << "Prepare Geometry ..." << std::endl;
// Sets material number for fluid and boundary
superGeometry.rename(0,2);
superGeometry.rename(2,1,0,1,0);
std::vector extend( 3, T(0) );
extend[0] = lx;
extend[1] = converter.getPhysLength(1);
extend[2] = lz;
std::vector origin( 3, T(0) );
IndicatorCuboid3D bottom(extend, origin);
origin[1] = ly-converter.getPhysLength(1);
IndicatorCuboid3D top(extend, origin);
origin[0] = lx/2.;
origin[1] = converter.getPhysLength(1);
origin[2] = lz/2.;
extend[0] = converter.getPhysLength(1);
extend[1] = converter.getPhysLength(1);
extend[2] = converter.getPhysLength(1);
IndicatorCuboid3D perturbation(extend, origin);
/// Set material numbers for bottom, top and pertubation
superGeometry.rename(2,2,1,bottom);
superGeometry.rename(2,3,1,top);
superGeometry.rename(1,4,perturbation);
/// Removes all not needed boundary voxels outside the surface
superGeometry.clean();
/// Removes all not needed boundary voxels inside the surface
superGeometry.innerClean();
superGeometry.checkForErrors();
superGeometry.print();
clout << "Prepare Geometry ... OK" << std::endl;
}
void prepareLattice( ThermalUnitConverter &converter,
SuperLattice3D& NSlattice,
SuperLattice3D& ADlattice,
ForcedBGKdynamics &bulkDynamics,
Dynamics& advectionDiffusionBulkDynamics,
sOnLatticeBoundaryCondition3D& NSboundaryCondition,
sOnLatticeBoundaryCondition3D& TboundaryCondition,
SuperGeometry3D& superGeometry )
{
OstreamManager clout(std::cout,"prepareLattice");
T Tomega = converter.getLatticeThermalRelaxationFrequency();
/// define lattice Dynamics
clout << "defining dynamics" << endl;
ADlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics());
NSlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics());
ADlattice.defineDynamics(superGeometry.getMaterialIndicator({1, 2, 3, 4}), &advectionDiffusionBulkDynamics);
NSlattice.defineDynamics(superGeometry, 1, &bulkDynamics);
NSlattice.defineDynamics(superGeometry, 2, &instances::getBounceBack());
NSlattice.defineDynamics(superGeometry, 3, &instances::getBounceBack());
NSlattice.defineDynamics(superGeometry, 4, &bulkDynamics);
/// sets boundary
TboundaryCondition.addTemperatureBoundary(superGeometry, 2, Tomega);
TboundaryCondition.addTemperatureBoundary(superGeometry, 3, Tomega);
/// define initial conditions
AnalyticalConst3D rho(1.);
AnalyticalConst3D u0(0.0, 0.0, 0.0);
AnalyticalConst3D T_cold(converter.getLatticeTemperature(Tcold));
AnalyticalConst3D T_hot(converter.getLatticeTemperature(Thot));
AnalyticalConst3D T_perturb(converter.getLatticeTemperature(Tperturb));
/// for each material set Rho, U and the Equilibrium
NSlattice.defineRhoU(superGeometry.getMaterialIndicator({1, 2, 3, 4}), rho, u0);
NSlattice.iniEquilibrium(superGeometry.getMaterialIndicator({1, 2, 3, 4}), rho, u0);
ADlattice.defineRho(superGeometry, 1, T_cold);
ADlattice.iniEquilibrium(superGeometry, 1, T_cold, u0);
ADlattice.defineRho(superGeometry, 2, T_hot);
ADlattice.iniEquilibrium(superGeometry, 2, T_hot, u0);
ADlattice.defineRho(superGeometry, 3, T_cold);
ADlattice.iniEquilibrium(superGeometry, 3, T_cold, u0);
ADlattice.defineRho(superGeometry, 4, T_perturb);
ADlattice.iniEquilibrium(superGeometry, 4, T_perturb, u0);
/// Make the lattice ready for simulation
NSlattice.initialize();
ADlattice.initialize();
clout << "Prepare Lattice ... OK" << std::endl;
}
void setBoundaryValues(ThermalUnitConverter &converter,
SuperLattice3D& NSlattice,
SuperLattice3D& ADlattice,
int iT, SuperGeometry3D& superGeometry)
{
// nothing to do here
}
void getResults(ThermalUnitConverter &converter,
SuperLattice3D& NSlattice,
SuperLattice3D& ADlattice, int iT,
SuperGeometry3D& superGeometry,
Timer& timer,
bool converged )
{
OstreamManager clout(std::cout,"getResults");
SuperVTMwriter3D vtkWriter("rayleighBenard3d");
SuperLatticePhysVelocity3D velocity(NSlattice, converter);
SuperLatticePhysPressure3D presure(NSlattice, converter);
SuperLatticePhysTemperature3D temperature(ADlattice, converter);
vtkWriter.addFunctor( presure );
vtkWriter.addFunctor( velocity );
vtkWriter.addFunctor( temperature );
if (iT == 0) {
/// Writes the converter log file
// writeLogFile(converter,"rayleighBenard3d");
/// Writes the geometry, cuboid no. and rank no. as vti file for visualization
SuperLatticeGeometry3D geometry(NSlattice, superGeometry);
SuperLatticeCuboid3D cuboid(NSlattice);
SuperLatticeRank3D rank(NSlattice);
vtkWriter.write(geometry);
vtkWriter.write(cuboid);
vtkWriter.write(rank);
vtkWriter.createMasterFile();
}
const int saveIter = converter.getLatticeTime(10.);
/// Writes the VTK files and prints statistics
if (iT%saveIter == 0 || converged) {
/// Timer console output
timer.update(iT);
timer.printStep();
/// Lattice statistics console output
NSlattice.getStatistics().print(iT,converter.getPhysTime(iT));
vtkWriter.write(iT);
BlockReduction3D2D planeReduction(temperature, {0, 0, lz/2.0}, {0, 0, 1});
BlockGifWriter gifWriter;
gifWriter.write(planeReduction, Tcold-0.1, Thot+0.1, iT, "temperature");
}
}
int main(int argc, char *argv[])
{
/// === 1st Step: Initialization ===
OstreamManager clout(std::cout,"main");
olbInit(&argc, &argv);
singleton::directories().setOutputDir("./tmp/");
ThermalUnitConverter converter(
(T) 0.1/N, // physDeltaX
(T) 0.1 / (1e-5 / 0.1 * sqrt( Ra / Pr)) * 0.1 / N, // physDeltaT = charLatticeVelocity / charPhysVelocity * physDeltaX
(T) 0.1, // charPhysLength
(T) 1e-5 / 0.1 * sqrt( Ra / Pr ), // charPhysVelocity
(T) 1e-5, // physViscosity
(T) 1.0, // physDensity
(T) 0.03, // physThermalConductivity
(T) Pr * 0.03 / 1e-5 / 1.0, // physSpecificHeatCapacity
(T) Ra * 1e-5 * 1e-5 / Pr / 9.81 / (Thot - Tcold) / pow(0.1, 3), // physThermalExpansionCoefficient
(T) Tcold, // charPhysLowTemperature
(T) Thot // charPhysHighTemperature
);
converter.print();
/// === 2nd Step: Prepare Geometry ===
std::vector extend(3,T());
extend[0] = lx;
extend[1] = ly;
extend[2] = lz;
std::vector origin(3,T());
IndicatorCuboid3D cuboid(extend, origin);
/// Instantiation of a cuboidGeometry with weights
CuboidGeometry3D cuboidGeometry(cuboid, converter.getPhysDeltaX(), singleton::mpi().getSize());
cuboidGeometry.setPeriodicity(true, false, true);
HeuristicLoadBalancer loadBalancer(cuboidGeometry);
SuperGeometry3D superGeometry(cuboidGeometry, loadBalancer, 2);
prepareGeometry(superGeometry, converter);
/// === 3rd Step: Prepare Lattice ===
SuperLattice3D ADlattice(superGeometry);
SuperLattice3D NSlattice(superGeometry);
sOnLatticeBoundaryCondition3D NSboundaryCondition(NSlattice);
createLocalBoundaryCondition3D(NSboundaryCondition);
sOnLatticeBoundaryCondition3D TboundaryCondition(ADlattice);
createAdvectionDiffusionBoundaryCondition3D(TboundaryCondition);
ForcedBGKdynamics NSbulkDynamics(
converter.getLatticeRelaxationFrequency(),
instances::getBulkMomenta()
);
AdvectionDiffusionBGKdynamics TbulkDynamics (
converter.getLatticeThermalRelaxationFrequency(),
instances::getBulkMomenta()
);
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!//
// This coupling must be necessarily be put on the Navier-Stokes lattice!!
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!//
std::vector dir{0.0, 1.0, 0.0};
T boussinesqForcePrefactor = 9.81 / converter.getConversionFactorVelocity() * converter.getConversionFactorTime() *
converter.getCharPhysTemperatureDifference() * converter.getPhysThermalExpansionCoefficient();
NavierStokesAdvectionDiffusionCouplingGenerator3D coupling(0, converter.getLatticeLength(lx), 0, converter.getLatticeLength(ly),
0, converter.getLatticeLength(lz), boussinesqForcePrefactor, converter.getLatticeTemperature(Tcold), 1., dir);
NSlattice.addLatticeCoupling(coupling, ADlattice);
prepareLattice(converter,
NSlattice, ADlattice,
NSbulkDynamics, TbulkDynamics,
NSboundaryCondition, TboundaryCondition, superGeometry );
/// === 4th Step: Main Loop with Timer ===
Timer timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel() );
timer.start();
util::ValueTracer converge(converter.getLatticeTime(50.),epsilon);
for (int iT = 0; iT < converter.getLatticeTime(maxPhysT); ++iT) {
if (converge.hasConverged()) {
clout << "Simulation converged." << endl;
getResults(converter, NSlattice, ADlattice, iT, superGeometry, timer, converge.hasConverged());
clout << "Time " << iT << "." << std::endl;
break;
}
/// === 5th Step: Definition of Initial and Boundary Conditions ===
setBoundaryValues(converter, NSlattice, ADlattice, iT, superGeometry);
/// === 6th Step: Collide and Stream Execution ===
ADlattice.collideAndStream();
NSlattice.collideAndStream();
NSlattice.executeCoupling();
/// === 7th Step: Computation and Output of the Results ===
getResults(converter, NSlattice, ADlattice, iT, superGeometry, timer, converge.hasConverged());
converge.takeValue(ADlattice.getStatistics().getAverageEnergy(),true);
}
timer.stop();
timer.printSummary();
}