/* Lattice Boltzmann sample, written in C++, using the OpenLB
* library
*
* Copyright (C) 2008 Orestis Malaspinas
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
// natural convection of air in a square cavity in 3D
#include "olb3D.h"
#include "olb3D.hh" // use only generic version!
using namespace olb;
using namespace olb::descriptors;
using namespace olb::graphics;
using namespace std;
typedef double T;
#define NSDESCRIPTOR D3Q19
#define TDESCRIPTOR D3Q7
// Parameters for the simulation setup
T Ra = 1e3; // Rayleigh-Zahl
const T Pr = 0.71; // Prandtl-Zahl
T lx;
int N = 64; // resolution of the model
const T maxPhysT = 1e4; // max. simulation time in s, SI unit
const T epsilon = 1.e-3; // precision of the convergence (residuum)
const T Tcold = 275.15;
const T Thot = 285.15;
const T Tmean = (Tcold + Thot) / 2.0;
/// Values from the literature studies from Davis
T LitVelocity3[] = { 3.649, 3.696, 1.013 };
T LitPosition3[] = { 0.813, 0.178 };
T LitVelocity4[] = { 16.178, 19.617, 1.212 };
T LitPosition4[] = { 0.823, 0.119 };
T LitVelocity5[] = { 34.730, 68.590, 1.975 };
T LitPosition5[] = { 0.855, 0.066 };
T LitVelocity6[] = { 64.530, 219.36, 3.400 };
T LitPosition6[] = { 0.850, 0.036 };
T LitNusselt3 = 1.117;
T LitNusselt4 = 2.238;
T LitNusselt5 = 4.509;
T LitNusselt6 = 8.817;
/// Compute the nusselt number at the left wall
T computeNusselt(SuperGeometry3D& superGeometry,
SuperLattice3D& NSlattice,
SuperLattice3D& ADlattice)
{
int voxel = 0, material = 0;
T T_x = 0, T_xplus1 = 0, T_xplus2 = 0;
T q = 0;
for (int iC = 0; iC < NSlattice.getLoadBalancer().size(); iC++) {
int ny = NSlattice.getBlockLattice(iC).getNy();
int iX = 0;
int iZ = 1;
for (int iY = 0; iY < ny; ++iY) {
material = superGeometry.getBlockGeometry(iC).getMaterial(iX,iY,iZ);
T_x = ADlattice.getBlockLattice(iC).get(iX,iY,iZ).computeRho();
T_xplus1 = ADlattice.getBlockLattice(iC).get(iX+1,iY,iZ).computeRho();
T_xplus2 = ADlattice.getBlockLattice(iC).get(iX+2,iY,iZ).computeRho();
if ( material == 2 ) {
q += (3.0*T_x - 4.0*T_xplus1 + 1.0*T_xplus2)/2.0*N;
voxel++;
}
}
}
#ifdef PARALLEL_MODE_MPI
singleton::mpi().reduceAndBcast(q, MPI_SUM);
singleton::mpi().reduceAndBcast(voxel, MPI_SUM);
#endif
return q / (T)voxel;
}
/// Stores geometry information in form of material numbers
void prepareGeometry(SuperGeometry3D& superGeometry,
ThermalUnitConverter &converter)
{
OstreamManager clout(std::cout,"prepareGeometry");
clout << "Prepare Geometry ..." << std::endl;
superGeometry.rename(0,4);
std::vector extend(3,T());
extend[0] = lx;
extend[1] = lx;
extend[2] = 3.0 * converter.getPhysLength(1);
std::vector origin(3,T());
origin[0] = converter.getPhysLength(1);
origin[1] = 0.5*converter.getPhysLength(1);
origin[2] = 0.0;
IndicatorCuboid3D cuboid2(extend, origin);
superGeometry.rename(4,1,cuboid2);
std::vector extendwallleft(3,T(0));
extendwallleft[0] = converter.getPhysLength(1);
extendwallleft[1] = lx;
extendwallleft[2] = 0.1;
std::vector originwallleft(3,T(0));
originwallleft[0] = 0.0;
originwallleft[1] = 0.0;
originwallleft[2] = 0.0;
IndicatorCuboid3D wallleft(extendwallleft, originwallleft);
std::vector extendwallright(3,T(0));
extendwallright[0] = converter.getPhysLength(1);
extendwallright[1] = lx;
extendwallright[2] = 0.1;
std::vector originwallright(3,T(0));
originwallright[0] = lx+converter.getPhysLength(1);
originwallright[1] = 0.0;
originwallright[2] = 0.0;
IndicatorCuboid3D wallright(extendwallright, originwallright);
superGeometry.rename(4,2,1,wallleft);
superGeometry.rename(4,3,1,wallright);
/// Removes all not needed boundary voxels outside the surface
superGeometry.clean();
/// Removes all not needed boundary voxels inside the surface
superGeometry.innerClean();
superGeometry.checkForErrors();
superGeometry.print();
clout << "Prepare Geometry ... OK" << std::endl;
}
void prepareLattice( ThermalUnitConverter &converter,
SuperLattice3D& NSlattice,
SuperLattice3D& ADlattice,
Dynamics &bulkDynamics,
Dynamics& advectionDiffusionBulkDynamics,
sOnLatticeBoundaryCondition3D& NSboundaryCondition,
sOnLatticeBoundaryCondition3D& TboundaryCondition,
SuperGeometry3D& superGeometry )
{
OstreamManager clout(std::cout,"prepareLattice");
clout << "Prepare Lattice ..." << std::endl;
T omega = converter.getLatticeRelaxationFrequency();
T Tomega = converter.getLatticeThermalRelaxationFrequency();
/// define lattice Dynamics
ADlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics());
NSlattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics());
ADlattice.defineDynamics(superGeometry.getMaterialIndicator({1, 2, 3}), &advectionDiffusionBulkDynamics);
ADlattice.defineDynamics(superGeometry, 4, &instances::getBounceBack());
NSlattice.defineDynamics(superGeometry.getMaterialIndicator({1, 2, 3}), &bulkDynamics);
NSlattice.defineDynamics(superGeometry, 4, &instances::getBounceBack());
/// sets boundary
TboundaryCondition.addTemperatureBoundary(superGeometry.getMaterialIndicator({2, 3}), Tomega);
NSboundaryCondition.addVelocityBoundary(superGeometry.getMaterialIndicator({2, 3}), omega);
/// define initial conditions
AnalyticalConst3D rho(1.);
AnalyticalConst3D u0(0.0, 0.0, 0.0);
AnalyticalConst3D T_cold(converter.getLatticeTemperature(Tcold));
AnalyticalConst3D T_hot(converter.getLatticeTemperature(Thot));
AnalyticalConst3D T_mean(converter.getLatticeTemperature(Tmean));
/// for each material set Rho, U and the Equilibrium
NSlattice.defineRhoU(superGeometry, 1, rho, u0);
NSlattice.iniEquilibrium(superGeometry, 1, rho, u0);
NSlattice.defineRhoU(superGeometry, 2, rho, u0);
NSlattice.iniEquilibrium(superGeometry, 2, rho, u0);
NSlattice.defineRhoU(superGeometry, 3, rho, u0);
NSlattice.iniEquilibrium(superGeometry, 3, rho, u0);
ADlattice.defineRho(superGeometry, 1, T_mean);
ADlattice.iniEquilibrium(superGeometry, 1, T_mean, u0);
ADlattice.defineRho(superGeometry, 2, T_hot);
ADlattice.iniEquilibrium(superGeometry, 2, T_hot, u0);
ADlattice.defineRho(superGeometry, 3, T_cold);
ADlattice.iniEquilibrium(superGeometry, 3, T_cold, u0);
/// Make the lattice ready for simulation
NSlattice.initialize();
ADlattice.initialize();
clout << "Prepare Lattice ... OK" << std::endl;
}
void setBoundaryValues(ThermalUnitConverter &converter,
SuperLattice3D& NSlattice,
SuperLattice3D& ADlattice,
int iT, SuperGeometry3D& superGeometry)
{
// nothing to do here
}
void getResults(ThermalUnitConverter &converter,
SuperLattice3D& NSlattice,
SuperLattice3D& ADlattice, int iT,
SuperGeometry3D& superGeometry,
Timer& timer,
bool converged)
{
OstreamManager clout(std::cout,"getResults");
SuperVTMwriter3D vtkWriter("thermalNaturalConvection3D");
SuperLatticeGeometry3D geometry(NSlattice, superGeometry);
SuperLatticePhysVelocity3D velocity(NSlattice, converter);
SuperLatticePhysPressure3D pressure(NSlattice, converter);
SuperLatticePhysTemperature3D temperature(ADlattice, converter);
vtkWriter.addFunctor( geometry );
vtkWriter.addFunctor( pressure );
vtkWriter.addFunctor( velocity );
vtkWriter.addFunctor( temperature );
AnalyticalFfromSuperF3D interpolation(velocity, true);
const int vtkIter = 2000.;
if (iT == 0) {
/// Writes the geometry, cuboid no. and rank no. as vti file for visualization
SuperLatticeCuboid3D cuboid(NSlattice);
SuperLatticeRank3D rank(NSlattice);
vtkWriter.write(cuboid);
vtkWriter.write(rank);
vtkWriter.createMasterFile();
}
/// Writes the VTK files
if (iT%vtkIter == 0 || converged) {
timer.update(iT);
timer.printStep();
/// NSLattice statistics console output
NSlattice.getStatistics().print(iT,converter.getPhysTime(iT));
/// ADLattice statistics console output
ADlattice.getStatistics().print(iT,converter.getPhysTime(iT));
vtkWriter.write(iT);
const double a[3] = {0, 0, 1.};
BlockReduction3D2D planeReduction(temperature, a);
BlockGifWriter gifWriter;
gifWriter.write(planeReduction, Tcold*0.98, Thot*1.02, iT, "temperature");
SuperEuklidNorm3D normVel( velocity );
BlockReduction3D2D planeReduction2(normVel, {0, 0, 1});
BlockGifWriter gifWriter2;
gifWriter2.write( planeReduction2, iT, "velocity" );
}
if ( converged ) {
T nusselt = computeNusselt(superGeometry, NSlattice, ADlattice);
/// Initialize vectors for data output
T xVelocity[3] = { T() };
T outputVelX[3] = { T() };
T yVelocity[3] = { T() };
T outputVelY[3] = { T() };
const int outputSize = 512;
Vector velX;
Vector posX;
Vector velY;
Vector posY;
/// loop for the resolution of the cavity at x = lx/2 in yDirection and vice versa
for (int n = 0; n < outputSize; ++n) {
T yPosition[3] = { lx / 2, lx * n / (T) outputSize, lx / N * 2 / 2 };
T xPosition[3] = { lx * n / (T) outputSize, lx / 2, lx / N * 2 / 2 };
/// Interpolate xVelocity at x = lx/2 for each yPosition
interpolation(xVelocity, yPosition);
interpolation(yVelocity, xPosition);
/// Store the interpolated values to compare them among each other in order to detect the maximum
velX[n] = xVelocity[0];
posY[n] = yPosition[1];
velY[n] = yVelocity[1];
posX[n] = xPosition[0];
/// Initialize output with the corresponding velocities and positions at the origin
if (n == 0) {
outputVelX[0] = velX[0];
outputVelX[1] = posY[0];
outputVelY[0] = velY[0];
outputVelY[1] = posX[0];
}
/// look for the maximum velocity in xDirection and the corresponding position in yDirection
if (n > 0 && velX[n] > outputVelX[0]) {
outputVelX[0] = velX[n];
outputVelX[1] = posY[n];
}
/// look for the maximum velocity in yDirection and the corresponding position in xDirection
if (n > 0 && velY[n] > outputVelY[0]) {
outputVelY[0] = velY[n];
outputVelY[1] = posX[n];
}
}
// compare to De Vahl Davis' benchmark solutions
clout << "Comparison against De Vahl Davis (1983):" << endl;
if (Ra == 1e3) {
clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity3[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity3[0]) << endl;
clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity3[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity3[1]) << endl;
clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity3[2] - outputVelY[0] / outputVelX[0]) / LitVelocity3[2]) << endl;
clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition3[0] - outputVelX[1] / lx) / LitPosition3[0]) << endl;
clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition3[1] - outputVelY[1] / lx) / LitPosition3[1]) << endl;
clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt3 - nusselt) / nusselt) << endl;
}
else if (Ra == 1e4) {
clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity4[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity4[0]) << endl;
clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity4[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity4[1]) << endl;
clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity4[2] - outputVelY[0] / outputVelX[0]) / LitVelocity4[2]) << endl;
clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition4[0] - outputVelX[1] / lx) / LitPosition4[0]) << endl;
clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition4[1] - outputVelY[1] / lx) / LitPosition4[1]) << endl;
clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt4 - nusselt) / nusselt) << endl;
}
else if (Ra == 1e5) {
clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity5[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity5[0]) << endl;
clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity5[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity5[1]) << endl;
clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity5[2] - outputVelY[0] / outputVelX[0]) / LitVelocity5[2]) << endl;
clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition5[0] - outputVelX[1] / lx) / LitPosition5[0]) << endl;
clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition5[1] - outputVelY[1] / lx) / LitPosition5[1]) << endl;
clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt5 - nusselt) / nusselt) << endl;
}
else if (Ra == 1e6) {
clout << "xVelocity in yDir=" << outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity6[0] - outputVelX[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity6[0]) << endl;
clout << "yVelocity in xDir=" << outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength() << "; error(rel)=" << (T) fabs((LitVelocity6[1] - outputVelY[0] / converter.getPhysThermalDiffusivity() * converter.getCharPhysLength()) / LitVelocity6[1]) << endl;
clout << "yMaxVel / xMaxVel=" << outputVelY[0] / outputVelX[0] << "; error(rel)=" << (T) fabs((LitVelocity6[2] - outputVelY[0] / outputVelX[0]) / LitVelocity6[2]) << endl;
clout << "yCoord of xMaxVel=" << outputVelX[1]/lx << "; error(rel)=" << (T) fabs((LitPosition6[0] - outputVelX[1] / lx) / LitPosition6[0]) << endl;
clout << "xCoord of yMaxVel=" << outputVelY[1]/lx << "; error(rel)=" << (T) fabs((LitPosition6[1] - outputVelY[1] / lx) / LitPosition6[1]) << endl;
clout << "Nusselt=" << nusselt << "; error(rel)=" << (T) fabs((LitNusselt6 - nusselt) / nusselt) << endl;
}
}
}
int main(int argc, char *argv[])
{
/// === 1st Step: Initialization ===
OstreamManager clout(std::cout,"main");
olbInit(&argc, &argv);
singleton::directories().setOutputDir("./tmp/");
T tau = 0.9;
if (argc>=2) {
Ra = atof(argv[1]);
}
lx = pow(Ra * 15.126e-6 * 15.126e-6 / Pr / 9.81 / (Thot - Tcold) / 0.00341, (T) 1/3); // length of the square
T charU = 1.0 / lx /( Pr * 25.684e-3 / 15.126e-6 / 1.0 * 1.0 / 25.684e-3);
if (Ra==1e3) {
charU *= LitVelocity3[1];
N = 64;
}
if (Ra==1e4) {
charU *= LitVelocity4[1];
N = 128;
}
if (Ra==1e5) {
charU *= LitVelocity5[1];
N = 256;
}
if (Ra==1e6) {
charU *= LitVelocity6[1];
N = 512;
}
ThermalUnitConverter converter(
(T) lx / N,
(T) (tau - 0.5) / descriptors::invCs2() * pow((lx/N),2) / 15.126e-6,
(T) lx,
(T) charU,
(T) 15.126e-6,
(T) 1.0,
(T) 25.684e-3,
(T) Pr * 25.684e-3 / 15.126e-6 / 1.0,
(T) 0.00341,
(T) Tcold,
(T) Thot
);
converter.print();
/// === 2nd Step: Prepare Geometry ===
std::vector extend(3,T());
extend[0] = lx + 2*converter.getPhysLength(1);
extend[1] = lx + converter.getPhysLength(1);
extend[2] = 2.*converter.getPhysLength(1);
std::vector origin(3,T());
IndicatorCuboid3D cuboid(extend, origin);
/// Instantiation of an empty cuboidGeometry
CuboidGeometry3D cuboidGeometry(cuboid, converter.getPhysDeltaX(), singleton::mpi().getSize());
cuboidGeometry.setPeriodicity(false, false, true); // x, y, z
/// Instantiation of a loadBalancer
HeuristicLoadBalancer loadBalancer(cuboidGeometry);
/// Instantiation of a superGeometry
SuperGeometry3D superGeometry(cuboidGeometry, loadBalancer, 2);
prepareGeometry(superGeometry, converter);
/// === 3rd Step: Prepare Lattice ===
SuperLattice3D ADlattice(superGeometry);
SuperLattice3D NSlattice(superGeometry);
sOnLatticeBoundaryCondition3D NSboundaryCondition(NSlattice);
createLocalBoundaryCondition3D(NSboundaryCondition);
sOnLatticeBoundaryCondition3D TboundaryCondition(ADlattice);
createAdvectionDiffusionBoundaryCondition3D(TboundaryCondition);
ForcedBGKdynamics NSbulkDynamics(
converter.getLatticeRelaxationFrequency(),
instances::getBulkMomenta());
AdvectionDiffusionBGKdynamics TbulkDynamics (
converter.getLatticeThermalRelaxationFrequency(),
instances::getAdvectionDiffusionBulkMomenta());
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!//
// This coupling must be necessarily be put on the Navier-Stokes lattice!!
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!//
std::vector dir{0.0, 1.0, 0.0};
T boussinesqForcePrefactor = 9.81 / converter.getConversionFactorVelocity() * converter.getConversionFactorTime() *
converter.getCharPhysTemperatureDifference() * converter.getPhysThermalExpansionCoefficient();
NavierStokesAdvectionDiffusionCouplingGenerator3D
coupling(0, converter.getLatticeLength(lx), 0, converter.getLatticeLength(lx), 0, converter.getLatticeLength(lx),
boussinesqForcePrefactor, converter.getLatticeTemperature(Tcold), 1., dir);
NSlattice.addLatticeCoupling(coupling, ADlattice);
prepareLattice(converter,
NSlattice, ADlattice,
NSbulkDynamics, TbulkDynamics,
NSboundaryCondition, TboundaryCondition, superGeometry );
/// === 4th Step: Main Loop with Timer ===
Timer timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel() );
timer.start();
util::ValueTracer converge(6,epsilon);
for (int iT = 0; iT < converter.getLatticeTime(maxPhysT); ++iT) {
if (converge.hasConverged()) {
clout << "Simulation converged." << endl;
clout << "Time " << iT << "." << std::endl;
getResults(converter, NSlattice, ADlattice, iT, superGeometry, timer, converge.hasConverged());
break;
}
/// === 5th Step: Definition of Initial and Boundary Conditions ===
setBoundaryValues(converter, NSlattice, ADlattice, iT, superGeometry);
/// === 6th Step: Collide and Stream Execution ===
ADlattice.collideAndStream();
NSlattice.collideAndStream();
NSlattice.executeCoupling();
/// === 7th Step: Computation and Output of the Results ===
getResults(converter, NSlattice, ADlattice, iT, superGeometry, timer, converge.hasConverged());
if (iT % 1000 == 0) {
converge.takeValue(computeNusselt(superGeometry, NSlattice, ADlattice),true);
}
}
timer.stop();
timer.printSummary();
}