/* Lattice Boltzmann sample, written in C++, using the OpenLB * library * * Copyright (C) 2015 Mathias J. Krause, Patrick Nathan * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /* nozzle3d.cpp: * This example examines a turbulent flow in a nozzle injection tube. At the * main inlet, either a block profile or a power 1/7 profile is imposed as a * Dirchlet velocity boundary condition, whereas at the outlet a * Dirichlet pressure condition is set by p=0 (i.e. rho=1). * * The example shows the usage of turbulent models. * * The results of a simular simulation setup are publish in TODO */ #include "olb3D.h" #ifndef OLB_PRECOMPILED // Unless precompiled version is used #include "olb3D.hh" // Include full template code #endif #include #include #include #include using namespace olb; using namespace olb::descriptors; using namespace olb::graphics; using namespace olb::util; using namespace std; typedef double T; // Choose your turbulent model of choice //#define RLB #define Smagorinsky //default //#define ConsitentStrainSmagorinsky //#define ShearSmagorinsky //#define Krause #ifdef ShearSmagorinsky #define DESCRIPTOR ShearSmagorinskyD3Q19Descriptor #else #define DESCRIPTOR D3Q19<> #endif // Parameters for the simulation setup const int N = 3; // resolution of the model, for RLB N>=5, others N>=2, but N>=5 recommended const int M = 1; // time discretization refinement const int inflowProfileMode = 0; // block profile (mode=0), power profile (mode=1) const T maxPhysT = 200.; // max. simulation time in s, SI unit template class TurbulentVelocity3D : public AnalyticalF3D { protected: // block profile (mode=0), power profile (mode=1) int _mode; T rho; T nu; T u0; T p0; T charL; T dx; public: TurbulentVelocity3D( UnitConverter const& converter, int mode=0 ) : AnalyticalF3D( 3 ) { _mode = mode; u0 = converter.getCharLatticeVelocity(); rho = converter.getPhysDensity(); nu = converter.getPhysViscosity(); charL = converter.getCharPhysLength(); p0 = converter.getCharPhysPressure(); dx = converter.getConversionFactorLength(); this->getName() = "turbulentVelocity3d"; }; bool operator()( T output[], const S input[] ) override { T y = input[1]; T z = input[2]; // block profile inititalization T u_calc = u0; // power profile inititalization if ( _mode==1 ) { T obst_y = 5.5+dx; T obst_z = 5.5+dx; T obst_r = 0.5; T B = 5.5; T kappa = 0.4; T ReTau = 183.6; u_calc = u0/7.*( 2.*nu*ReTau/( charL*kappa )*log( fabs( 2.*ReTau/charL*( obst_r - sqrt( pow( y - obst_y, 2. ) + pow( z - obst_z, 2. ) ) )*1.5*( 1 + sqrt( pow( y - obst_y, 2. ) + pow( z - obst_z, 2. ) )/obst_r )/( 1 + 2.*pow( sqrt( pow( y - obst_y, 2. ) + pow( z - obst_z, 2. ) )/obst_r, 2. ) ) ) + B ) ); } T a = -1., b = 1.; T nRandom = rand()/( T )RAND_MAX*( b-a ) + a; output[0] = u_calc+ 0.15*u0*nRandom; output[1] = 0.15*u0*nRandom; output[2] = 0.15*u0*nRandom; return true; }; }; void prepareGeometry( UnitConverter const& converter, IndicatorF3D& indicator, SuperGeometry3D& superGeometry ) { OstreamManager clout( std::cout,"prepareGeometry" ); clout << "Prepare Geometry ..." << std::endl; // Sets material number for fluid and boundary superGeometry.rename( 0,2,indicator ); Vector origin( T(), 5.5*converter.getCharPhysLength()+converter.getConversionFactorLength(), 5.5*converter.getCharPhysLength()+converter.getConversionFactorLength() ); Vector extend( 4.*converter.getCharPhysLength()+5*converter.getConversionFactorLength(), 5.5*converter.getCharPhysLength()+converter.getConversionFactorLength(), 5.5*converter.getCharPhysLength()+converter.getConversionFactorLength() ); IndicatorCylinder3D inletCylinder( extend, origin, converter.getCharPhysLength() ); superGeometry.rename( 2,1,inletCylinder ); origin[0]=4.*converter.getCharPhysLength(); origin[1]=5.5*converter.getCharPhysLength()+converter.getConversionFactorLength(); origin[2]=5.5*converter.getCharPhysLength()+converter.getConversionFactorLength(); extend[0]=54.*converter.getCharPhysLength(); extend[1]=5.5*converter.getCharPhysLength()+converter.getConversionFactorLength(); extend[2]=5.5*converter.getCharPhysLength()+converter.getConversionFactorLength(); IndicatorCylinder3D injectionTube( extend, origin, 5.5*converter.getCharPhysLength() ); superGeometry.rename( 2,1,injectionTube ); origin[0]=converter.getConversionFactorLength(); origin[1]=5.5*converter.getCharPhysLength()+converter.getConversionFactorLength(); origin[2]=5.5*converter.getCharPhysLength()+converter.getConversionFactorLength(); extend[0]=T(); extend[1]=5.5*converter.getCharPhysLength()+converter.getConversionFactorLength(); extend[2]=5.5*converter.getCharPhysLength()+converter.getConversionFactorLength(); IndicatorCylinder3D cylinderIN( extend, origin, converter.getCharPhysLength() ); superGeometry.rename( 1,3,cylinderIN ); origin[0]=54.*converter.getCharPhysLength()-converter.getConversionFactorLength(); origin[1]=5.5*converter.getCharPhysLength()+converter.getConversionFactorLength(); origin[2]=5.5*converter.getCharPhysLength()+converter.getConversionFactorLength(); extend[0]=54.*converter.getCharPhysLength(); extend[1]=5.5*converter.getCharPhysLength()+converter.getConversionFactorLength(); extend[2]=5.5*converter.getCharPhysLength()+converter.getConversionFactorLength(); IndicatorCylinder3D cylinderOUT( extend, origin, 5.5*converter.getCharPhysLength() ); superGeometry.rename( 1,4,cylinderOUT ); // Removes all not needed boundary voxels outside the surface superGeometry.clean(); // Removes all not needed boundary voxels inside the surface superGeometry.innerClean(); superGeometry.checkForErrors(); superGeometry.print(); clout << "Prepare Geometry ... OK" << std::endl; } void prepareLattice( SuperLattice3D& sLattice, UnitConverter const& converter, Dynamics& bulkDynamics, sOnLatticeBoundaryCondition3D& bc, sOffLatticeBoundaryCondition3D& offBc, SuperGeometry3D& superGeometry ) { OstreamManager clout( std::cout,"prepareLattice" ); clout << "Prepare Lattice ..." << std::endl; const T omega = converter.getLatticeRelaxationFrequency(); // Material=0 -->do nothing sLattice.defineDynamics( superGeometry, 0, &instances::getNoDynamics() ); // Material=1 -->bulk dynamics // Material=3 -->bulk dynamics (inflow) // Material=4 -->bulk dynamics (outflow) sLattice.defineDynamics( superGeometry.getMaterialIndicator({1, 3, 4}), &bulkDynamics ); // Material=2 -->bounce back sLattice.defineDynamics( superGeometry, 2, &instances::getBounceBack() ); bc.addVelocityBoundary( superGeometry, 3, omega ); bc.addPressureBoundary( superGeometry, 4, omega ); clout << "Prepare Lattice ... OK" << std::endl; } void setBoundaryValues( UnitConverter const&converter, SuperLattice3D& lattice, SuperGeometry3D& superGeometry, int iT ) { OstreamManager clout( std::cout,"setBoundaryValues" ); if ( iT==0 ) { AnalyticalConst3D rhoF( 1 ); std::vector velocity( 3,T() ); AnalyticalConst3D uF( velocity ); // Seeding of random fluctuations and definition of the velocity field srand( time( nullptr ) ); TurbulentVelocity3D uSol( converter, inflowProfileMode ); lattice.iniEquilibrium( superGeometry.getMaterialIndicator({1, 2, 4}), rhoF, uF ); lattice.iniEquilibrium( superGeometry, 3, rhoF, uSol ); lattice.defineU( superGeometry, 3, uSol ); lattice.defineRho( superGeometry, 4, rhoF ); // Make the lattice ready for simulation lattice.initialize(); } } void getResults( SuperLattice3D& sLattice, UnitConverter const& converter, int iT, SuperGeometry3D& superGeometry, Timer& timer ) { OstreamManager clout( std::cout,"getResults" ); SuperVTMwriter3D vtmWriter( "nozzle3d" ); if ( iT==0 ) { // Writes the geometry, cuboid no. and rank no. as vti file for visualization SuperLatticeGeometry3D geometry( sLattice, superGeometry ); SuperLatticeCuboid3D cuboid( sLattice ); SuperLatticeRank3D rank( sLattice ); vtmWriter.write( geometry ); vtmWriter.write( cuboid ); vtmWriter.write( rank ); vtmWriter.createMasterFile(); } // Writes the vtk files if ( iT%converter.getLatticeTime( maxPhysT/100. )==0 ) { // Create the data-reading functors... SuperLatticePhysVelocity3D velocity( sLattice, converter ); SuperLatticePhysPressure3D pressure( sLattice, converter ); vtmWriter.addFunctor( velocity ); vtmWriter.addFunctor( pressure ); vtmWriter.write( iT ); SuperEuklidNorm3D normVel( velocity ); BlockReduction3D2D planeReduction( normVel, {0, 1, 0} ); // write output as JPEG heatmap::write(planeReduction, iT); } // Writes output on the console if ( iT%converter.getLatticeTime( maxPhysT/200. )==0 ) { timer.update( iT ); timer.printStep(); sLattice.getStatistics().print( iT, converter.getPhysTime( iT ) ); } } int main( int argc, char* argv[] ) { // === 1st Step: Initialization === olbInit( &argc, &argv ); singleton::directories().setOutputDir( "./tmp/" ); OstreamManager clout( std::cout,"main" ); // display messages from every single mpi process // clout.setMultiOutput(true); UnitConverterFromResolutionAndRelaxationTime const converter( int {N}, // resolution: number of voxels per charPhysL (T) 0.500018, // latticeRelaxationTime: relaxation time, have to be greater than 0.5! (T) 1, // charPhysLength: reference length of simulation geometry (T) 1, // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__ (T) 0.0002, // physViscosity: physical kinematic viscosity in __m^2 / s__ (T) 1.0 // physDensity: physical density in __kg / m^3__ ); // Prints the converter log as console output converter.print(); // Writes the converter log in a file converter.write("nozzle3d"); Vector origin; Vector extend( 54.*converter.getCharPhysLength(), 11.*converter.getCharPhysLength()+2.*converter.getConversionFactorLength(), 11.*converter.getCharPhysLength()+2.*converter.getConversionFactorLength() ); IndicatorCuboid3D cuboid( extend,origin ); CuboidGeometry3D cuboidGeometry( cuboid, converter.getConversionFactorLength(), singleton::mpi().getSize() ); HeuristicLoadBalancer loadBalancer( cuboidGeometry ); // === 2nd Step: Prepare Geometry === SuperGeometry3D superGeometry( cuboidGeometry, loadBalancer, 2 ); prepareGeometry( converter, cuboid, superGeometry ); // === 3rd Step: Prepare Lattice === SuperLattice3D sLattice( superGeometry ); Dynamics* bulkDynamics; const T omega = converter.getLatticeRelaxationFrequency(); #if defined(RLB) bulkDynamics = new RLBdynamics( omega, instances::getBulkMomenta() ); #elif defined(Smagorinsky) bulkDynamics = new SmagorinskyBGKdynamics( omega, instances::getBulkMomenta(), 0.15); #elif defined(ShearSmagorinsky) bulkDynamics = new ShearSmagorinskyBGKdynamics( omega, instances::getBulkMomenta(), 0.15); #elif defined(Krause) bulkDynamics = new KrauseBGKdynamics( omega, instances::getBulkMomenta(), 0.15); #else //ConsitentStrainSmagorinsky bulkDynamics = new ConStrainSmagorinskyBGKdynamics( omega, instances::getBulkMomenta(), 0.05); #endif sOnLatticeBoundaryCondition3D sBoundaryCondition( sLattice ); createInterpBoundaryCondition3D ( sBoundaryCondition ); sOffLatticeBoundaryCondition3D sOffBoundaryCondition( sLattice ); createBouzidiBoundaryCondition3D ( sOffBoundaryCondition ); prepareLattice( sLattice, converter, *bulkDynamics, sBoundaryCondition, sOffBoundaryCondition, superGeometry ); // === 4th Step: Main Loop with Timer === Timer timer( converter.getLatticeTime( maxPhysT ), superGeometry.getStatistics().getNvoxel() ); timer.start(); for ( int iT = 0; iT <= converter.getLatticeTime( maxPhysT ); ++iT ) { // === 5ath Step: Apply filter #ifdef ADM SuperLatticeADM3D admF( sLattice, 0.01, 2 ); admF.execute( superGeometry, 1 ); #endif // === 5bth Step: Definition of Initial and Boundary Conditions === setBoundaryValues( converter, sLattice, superGeometry, iT ); // === 6th Step: Collide and Stream Execution === sLattice.collideAndStream(); // === 7th Step: Computation and Output of the Results === getResults( sLattice, converter, iT, superGeometry, timer ); } timer.stop(); timer.printSummary(); delete bulkDynamics; }