/* Lattice Boltzmann sample, written in C++, using the OpenLB
* library
*
* Copyright (C) 2017 Mathias J. Krause, Patrick Nathan, Alejandro C. Barreto, Marc Haußmann
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/* tgv3d.cpp:
* The Taylor-Green-Vortex (TGV) is one of the simplest configuration,
* where you can investigate the generation of small structures and the resulting turbulence.
* The 2pi periodic box domain and the single mode initial conditions contribute to the simplicity.
* In consequence, the TGV is a common benchmark case for
* Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES).
*
* This example shows the usage and the effects of different subgrid scale turbulence models.
* The molecular dissipation rate, the eddy dissipation rate and
* the effective dissipation rate are calculated and plotted over the simulation time.
* This results can be compared with a published DNS solution, e.g.
* Brachet, Marc E., et al. "Small-scale structure of the Taylor–Green vortex."
* Journal of Fluid Mechanics 130 (1983): 411-452.
*/
#include "olb3D.h"
#ifndef OLB_PRECOMPILED // Unless precompiled version is used,
#include "olb3D.hh" // include full template code
#endif
#include
#include
#include
#include
using namespace olb;
using namespace olb::descriptors;
using namespace olb::graphics;
using namespace olb::util;
using namespace std;
typedef double T;
// Choose your turbulent model of choice
//#define RLB
#define Smagorinsky
//#define WALE
//#define ConsistentStrainSmagorinsky
//#define ShearSmagorinsky
//#define Krause
//#define DNS
#define finiteDiff //for N<256
#ifdef ShearSmagorinsky
#define DESCRIPTOR ShearSmagorinskyD3Q19Descriptor
#elif defined (WALE)
#define DESCRIPTOR WALED3Q19Descriptor
#else
#define DESCRIPTOR D3Q19<>
#endif
// Global constants
const T pi = 4.0 * std::atan(1.0);
const T volume = pow(2. * pi, 3.); // volume of the 2pi periodic box
// Parameters for the simulation setup
const T maxPhysT = 10; // max. simulation time in s, SI unit
int N = 128; // resolution of the model
T Re = 800; // defined as 1/kinematic viscosity
T smagoConst = 0.1; // Smagorisky Constant, for ConsistentStrainSmagorinsky smagoConst = 0.033
T vtkSave = 0.25; // time interval in s for vtk output
T gnuplotSave = 0.1; // time interval in s for gnuplot output
bool plotDNS = true; //available for Re=800, Re=1600, Re=3000 (maxPhysT<=10)
vector> values_DNS;
template
class Tgv3D : public AnalyticalF3D {
protected:
T u0;
// initial solution of the TGV
public:
Tgv3D(UnitConverter const& converter, T frac) : AnalyticalF3D(3)
{
u0 = converter.getCharLatticeVelocity();
};
bool operator()(T output[], const S input[]) override
{
T x = input[0];
T y = input[1];
T z = input[2];
output[0] = u0 * sin(x) * cos(y) * cos(z);
output[1] = -u0 * cos(x) * sin(y) * cos(z);
output[2] = 0;
return true;
};
};
void prepareGeometry(SuperGeometry3D& superGeometry)
{
OstreamManager clout(std::cout,"prepareGeometry");
clout << "Prepare Geometry ..." << std::endl;
superGeometry.rename(0,1);
superGeometry.communicate();
/// Removes all not needed boundary voxels outside the surface
superGeometry.clean();
/// Removes all not needed boundary voxels inside the surface
superGeometry.innerClean();
superGeometry.checkForErrors();
superGeometry.print();
clout << "Prepare Geometry ... OK" << std::endl;
return;
}
// Set up the geometry of the simulation
void prepareLattice(SuperLattice3D& sLattice,
UnitConverter const& converter,
Dynamics& bulkDynamics,
SuperGeometry3D& superGeometry)
{
OstreamManager clout(std::cout,"prepareLattice");
clout << "Prepare Lattice ..." << std::endl;
/// Material=0 -->do nothing
sLattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics());
/// Material=1 -->bulk dynamics
sLattice.defineDynamics(superGeometry, 1, &bulkDynamics);
sLattice.initialize();
clout << "Prepare Lattice ... OK" << std::endl;
}
void setBoundaryValues(SuperLattice3D& sLattice,
UnitConverter const& converter,
SuperGeometry3D& superGeometry)
{
OstreamManager clout(std::cout,"setBoundaryValues");
AnalyticalConst3D rho(1.);
Tgv3D uSol(converter, 1);
sLattice.defineRhoU(superGeometry, 1, rho, uSol);
sLattice.iniEquilibrium(superGeometry, 1, rho, uSol);
sLattice.initialize();
}
// Interpolate the data points to the output interval
void getDNSValues()
{
string file_name;
//Brachet, Marc E., et al. "Small-scale structure of the Taylor–Green vortex." Journal of Fluid Mechanics 130 (1983): 411-452; Figure 7
if (abs(Re - 800.0) < numeric_limits::epsilon() && maxPhysT <= 10.0 + numeric_limits::epsilon()) {
file_name= "Re800_Brachet.inp";
}
else if (abs(Re - 1600.0) < numeric_limits::epsilon() && maxPhysT <= 10.0 + numeric_limits::epsilon()) {
file_name = "Re1600_Brachet.inp";
}
else if (abs(Re - 3000.0) < numeric_limits::epsilon() && maxPhysT <= 10.0 + numeric_limits::epsilon()) {
file_name = "Re3000_Brachet.inp";
}
else {
std::cout<<"Reynolds number not supported or maxPhysT>10: DNS plot will be disabled"<> parsedDat;
while (std::getline(data, line)) {
std::stringstream lineStream(line);
std::string cell;
std::vector parsedRow;
while (std::getline(lineStream, cell, ' ')) {
parsedRow.push_back(atof(cell.c_str()));
}
if (parsedDat.size() > 0 && parsedRow.size() > 1) {
parsedRow.push_back((parsedRow[1] - parsedDat[parsedDat.size() - 1][1]) / (parsedRow[0] - parsedDat[parsedDat.size()-1][0]));
parsedRow.push_back(parsedDat[parsedDat.size()-1][1] - parsedRow[2] * parsedDat[parsedDat.size()-1][0]);
}
parsedDat.push_back(parsedRow);
}
int steps = maxPhysT / gnuplotSave + 1.5;
for (int i=0; i < steps; i++) {
std::vector inValues_temp;
inValues_temp.push_back(i * gnuplotSave);
if (inValues_temp[0] < parsedDat[0][0]) {
inValues_temp.push_back(parsedDat[1][2] * inValues_temp[0] + parsedDat[1][3]);
}
else if (inValues_temp[0] > parsedDat[parsedDat.size()-1][0]) {
inValues_temp.push_back(parsedDat[parsedDat.size()-1][2] * inValues_temp[0] +
parsedDat[parsedDat.size()-1][3]);
}
else {
for (size_t j=0; j < parsedDat.size()-1; j++) {
if (inValues_temp[0] > parsedDat[j][0] && inValues_temp[0] < parsedDat[j+1][0]) {
inValues_temp.push_back(parsedDat[j+1][2] * inValues_temp[0] + parsedDat[j+1][3]);
}
}
}
values_DNS.push_back(inValues_temp);
}
}
void getResults(SuperLattice3D& sLattice,
UnitConverter const& converter, int iT,
SuperGeometry3D& superGeometry, Timer& timer,
Dynamics* bulkDynamics)
{
OstreamManager clout(std::cout,"getResults");
SuperVTMwriter3D vtmWriter("tgv3d");
if (iT == 0) {
// Writes the geometry, cuboid no. and rank no. as vti file for visualization
SuperLatticeGeometry3D geometry(sLattice, superGeometry);
SuperLatticeCuboid3D cuboid(sLattice);
SuperLatticeRank3D rank(sLattice);
superGeometry.rename(0,2);
vtmWriter.write(geometry);
vtmWriter.write(cuboid);
vtmWriter.write(rank);
vtmWriter.createMasterFile();
if (plotDNS==true) {
getDNSValues();
}
}
if (iT%converter.getLatticeTime(vtkSave) == 0) {
SuperLatticePhysVelocity3D velocity(sLattice, converter);
SuperLatticePhysPressure3D pressure(sLattice, converter);
vtmWriter.addFunctor( velocity );
vtmWriter.addFunctor( pressure );
vtmWriter.write(iT);
// write output of velocity as JPEG
SuperEuklidNorm3D normVel( velocity );
BlockReduction3D2D planeReduction( normVel, {0, 0, 1} );
heatmap::write(planeReduction, iT);
timer.update(iT);
timer.printStep(2);
sLattice.getStatistics().print(iT,converter.getPhysTime( iT ));
}
static Gnuplot gplot("Turbulence_Dissipation_Rate");
if (iT%converter.getLatticeTime(gnuplotSave) == 0) {
int input[3];
T output[1];
#if defined (finiteDiff)
std::list matNumber;
matNumber.push_back(1);
SuperLatticePhysDissipationFD3D diss(superGeometry, sLattice, matNumber, converter);
#if !defined (DNS)
SuperLatticePhysEffectiveDissipationFD3D effectiveDiss(superGeometry, sLattice, matNumber,
converter, *(dynamic_cast*>(bulkDynamics)));
#endif
#else
SuperLatticePhysDissipation3D diss(sLattice, converter);
#if !defined (DNS)
SuperLatticePhysEffevtiveDissipation3D effectiveDiss(sLattice, converter, smagoConst, *(dynamic_cast*>(bulkDynamics)));
#endif
#endif
SuperIntegral3D integralDiss(diss, superGeometry, 1);
integralDiss(output, input);
T diss_mol = output[0];
diss_mol /= volume;
T diss_eff = diss_mol;
#if !defined (DNS)
SuperIntegral3D integralEffectiveDiss(effectiveDiss, superGeometry, 1);
integralEffectiveDiss(output, input);
diss_eff = output[0];
diss_eff /= volume;
#endif
T diss_eddy = diss_eff - diss_mol;
if(plotDNS==true) {
int step = converter.getPhysTime(iT) / gnuplotSave + 0.5;
gplot.setData(converter.getPhysTime(iT), {diss_mol, diss_eddy, diss_eff, values_DNS[step][1]}, {"molecular dissipation rate", "eddy dissipation rate", "effective dissipation rate" ,"Brachet et al."}, "bottom right");
} else {
gplot.setData(converter.getPhysTime(iT), {diss_mol, diss_eddy, diss_eff}, {"molecular dissipation rate", "eddy dissipation rate", "effective dissipation rate"}, "bottom right");
}
gplot.writePNG();
}
/// write pdf at last time step
if (iT == converter.getLatticeTime(maxPhysT)-1) {
gplot.writePDF();
}
return;
}
int main(int argc, char* argv[])
{
/// === 1st Step: Initialization ===
olbInit(&argc, &argv);
singleton::directories().setOutputDir("./tmp/");
OstreamManager clout( std::cout,"main" );
UnitConverterFromResolutionAndRelaxationTime converter(
int {int(std::nearbyint(N/(2*pi)))}, // resolution: number of voxels per charPhysL
(T) 0.507639, // latticeRelaxationTime: relaxation time, have to be greater than 0.5!
(T) 1, // charPhysLength: reference length of simulation geometry
(T) 1, // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__
(T) 1./Re, // physViscosity: physical kinematic viscosity in __m^2 / s__
(T) 1.0 // physDensity: physical density in __kg / m^3__
);
// Prints the converter log as console output
converter.print();
// Writes the converter log in a file
converter.write("tgv3d");
#ifdef PARALLEL_MODE_MPI
const int noOfCuboids = 2 * singleton::mpi().getSize();
#else
const int noOfCuboids = 1;
#endif
CuboidGeometry3D cuboidGeometry(0, 0, 0, converter.getConversionFactorLength(), N, N, N, noOfCuboids);
cuboidGeometry.setPeriodicity(true, true, true);
HeuristicLoadBalancer loadBalancer(cuboidGeometry);
// === 2nd Step: Prepare Geometry ===
SuperGeometry3D superGeometry(cuboidGeometry, loadBalancer, 3);
prepareGeometry(superGeometry);
/// === 3rd Step: Prepare Lattice ===
SuperLattice3D sLattice(superGeometry);
std::unique_ptr> bulkDynamics;
const T omega = converter.getLatticeRelaxationFrequency();
#if defined(RLB)
bulkDynamics.reset(new RLBdynamics(omega, instances::getBulkMomenta()));
#elif defined(DNS)
bulkDynamics.reset(new BGKdynamics(omega, instances::getBulkMomenta()));
#elif defined(WALE)
bulkDynamics.reset(new WALEBGKdynamics(omega, instances::getBulkMomenta(),
smagoConst));
#elif defined(ShearSmagorinsky)
bulkDynamics.reset(new ShearSmagorinskyBGKdynamics(omega, instances::getBulkMomenta(),
smagoConst));
#elif defined(Krause)
bulkDynamics.reset(new KrauseBGKdynamics(omega, instances::getBulkMomenta(),
smagoConst));
#elif defined(ConsistentStrainSmagorinsky)
bulkDynamics.reset(new ConStrainSmagorinskyBGKdynamics(omega, instances::getBulkMomenta(),
smagoConst));
#else //DNS Simulation
bulkDynamics.reset(new SmagorinskyBGKdynamics(omega, instances::getBulkMomenta(),
smagoConst));
#endif
prepareLattice(sLattice, converter, *bulkDynamics, superGeometry);
#if defined(WALE)
std::list mat;
mat.push_back(1);
std::unique_ptr;SuperLatticeF3D> functor(new SuperLatticeVelocityGradientFD3D(superGeometry, sLattice, mat));
#endif
/// === 4th Step: Main Loop with Timer ===
Timer timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel() );
timer.start();
// === 5th Step: Definition of Initial and Boundary Conditions ===
setBoundaryValues(sLattice, converter, superGeometry);
for (int iT = 0; iT <= converter.getLatticeTime(maxPhysT); ++iT) {
#if defined(WALE)
sLattice.defineField(superGeometry, 1, *functor);
#endif
/// === 6th Step: Computation and Output of the Results ===
getResults(sLattice, converter, iT, superGeometry, timer, bulkDynamics.get());
/// === 7th Step: Collide and Stream Execution ===
sLattice.collideAndStream();
}
timer.stop();
timer.printSummary();
return 0;
}