/* Lattice Boltzmann sample, written in C++, using the OpenLB * library * * Copyright (C) 2017 Mathias J. Krause, Patrick Nathan, Alejandro C. Barreto, Marc Haußmann * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /* tgv3d.cpp: * The Taylor-Green-Vortex (TGV) is one of the simplest configuration, * where you can investigate the generation of small structures and the resulting turbulence. * The 2pi periodic box domain and the single mode initial conditions contribute to the simplicity. * In consequence, the TGV is a common benchmark case for * Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES). * * This example shows the usage and the effects of different subgrid scale turbulence models. * The molecular dissipation rate, the eddy dissipation rate and * the effective dissipation rate are calculated and plotted over the simulation time. * This results can be compared with a published DNS solution, e.g. * Brachet, Marc E., et al. "Small-scale structure of the Taylor–Green vortex." * Journal of Fluid Mechanics 130 (1983): 411-452. */ #include "olb3D.h" #ifndef OLB_PRECOMPILED // Unless precompiled version is used, #include "olb3D.hh" // include full template code #endif #include #include #include #include using namespace olb; using namespace olb::descriptors; using namespace olb::graphics; using namespace olb::util; using namespace std; typedef double T; // Choose your turbulent model of choice //#define RLB #define Smagorinsky //#define WALE //#define ConsistentStrainSmagorinsky //#define ShearSmagorinsky //#define Krause //#define DNS #define finiteDiff //for N<256 #ifdef ShearSmagorinsky #define DESCRIPTOR ShearSmagorinskyD3Q19Descriptor #elif defined (WALE) #define DESCRIPTOR WALED3Q19Descriptor #else #define DESCRIPTOR D3Q19<> #endif // Global constants const T pi = 4.0 * std::atan(1.0); const T volume = pow(2. * pi, 3.); // volume of the 2pi periodic box // Parameters for the simulation setup const T maxPhysT = 10; // max. simulation time in s, SI unit int N = 128; // resolution of the model T Re = 800; // defined as 1/kinematic viscosity T smagoConst = 0.1; // Smagorisky Constant, for ConsistentStrainSmagorinsky smagoConst = 0.033 T vtkSave = 0.25; // time interval in s for vtk output T gnuplotSave = 0.1; // time interval in s for gnuplot output bool plotDNS = true; //available for Re=800, Re=1600, Re=3000 (maxPhysT<=10) vector> values_DNS; template class Tgv3D : public AnalyticalF3D { protected: T u0; // initial solution of the TGV public: Tgv3D(UnitConverter const& converter, T frac) : AnalyticalF3D(3) { u0 = converter.getCharLatticeVelocity(); }; bool operator()(T output[], const S input[]) override { T x = input[0]; T y = input[1]; T z = input[2]; output[0] = u0 * sin(x) * cos(y) * cos(z); output[1] = -u0 * cos(x) * sin(y) * cos(z); output[2] = 0; return true; }; }; void prepareGeometry(SuperGeometry3D& superGeometry) { OstreamManager clout(std::cout,"prepareGeometry"); clout << "Prepare Geometry ..." << std::endl; superGeometry.rename(0,1); superGeometry.communicate(); /// Removes all not needed boundary voxels outside the surface superGeometry.clean(); /// Removes all not needed boundary voxels inside the surface superGeometry.innerClean(); superGeometry.checkForErrors(); superGeometry.print(); clout << "Prepare Geometry ... OK" << std::endl; return; } // Set up the geometry of the simulation void prepareLattice(SuperLattice3D& sLattice, UnitConverter const& converter, Dynamics& bulkDynamics, SuperGeometry3D& superGeometry) { OstreamManager clout(std::cout,"prepareLattice"); clout << "Prepare Lattice ..." << std::endl; /// Material=0 -->do nothing sLattice.defineDynamics(superGeometry, 0, &instances::getNoDynamics()); /// Material=1 -->bulk dynamics sLattice.defineDynamics(superGeometry, 1, &bulkDynamics); sLattice.initialize(); clout << "Prepare Lattice ... OK" << std::endl; } void setBoundaryValues(SuperLattice3D& sLattice, UnitConverter const& converter, SuperGeometry3D& superGeometry) { OstreamManager clout(std::cout,"setBoundaryValues"); AnalyticalConst3D rho(1.); Tgv3D uSol(converter, 1); sLattice.defineRhoU(superGeometry, 1, rho, uSol); sLattice.iniEquilibrium(superGeometry, 1, rho, uSol); sLattice.initialize(); } // Interpolate the data points to the output interval void getDNSValues() { string file_name; //Brachet, Marc E., et al. "Small-scale structure of the Taylor–Green vortex." Journal of Fluid Mechanics 130 (1983): 411-452; Figure 7 if (abs(Re - 800.0) < numeric_limits::epsilon() && maxPhysT <= 10.0 + numeric_limits::epsilon()) { file_name= "Re800_Brachet.inp"; } else if (abs(Re - 1600.0) < numeric_limits::epsilon() && maxPhysT <= 10.0 + numeric_limits::epsilon()) { file_name = "Re1600_Brachet.inp"; } else if (abs(Re - 3000.0) < numeric_limits::epsilon() && maxPhysT <= 10.0 + numeric_limits::epsilon()) { file_name = "Re3000_Brachet.inp"; } else { std::cout<<"Reynolds number not supported or maxPhysT>10: DNS plot will be disabled"<> parsedDat; while (std::getline(data, line)) { std::stringstream lineStream(line); std::string cell; std::vector parsedRow; while (std::getline(lineStream, cell, ' ')) { parsedRow.push_back(atof(cell.c_str())); } if (parsedDat.size() > 0 && parsedRow.size() > 1) { parsedRow.push_back((parsedRow[1] - parsedDat[parsedDat.size() - 1][1]) / (parsedRow[0] - parsedDat[parsedDat.size()-1][0])); parsedRow.push_back(parsedDat[parsedDat.size()-1][1] - parsedRow[2] * parsedDat[parsedDat.size()-1][0]); } parsedDat.push_back(parsedRow); } int steps = maxPhysT / gnuplotSave + 1.5; for (int i=0; i < steps; i++) { std::vector inValues_temp; inValues_temp.push_back(i * gnuplotSave); if (inValues_temp[0] < parsedDat[0][0]) { inValues_temp.push_back(parsedDat[1][2] * inValues_temp[0] + parsedDat[1][3]); } else if (inValues_temp[0] > parsedDat[parsedDat.size()-1][0]) { inValues_temp.push_back(parsedDat[parsedDat.size()-1][2] * inValues_temp[0] + parsedDat[parsedDat.size()-1][3]); } else { for (size_t j=0; j < parsedDat.size()-1; j++) { if (inValues_temp[0] > parsedDat[j][0] && inValues_temp[0] < parsedDat[j+1][0]) { inValues_temp.push_back(parsedDat[j+1][2] * inValues_temp[0] + parsedDat[j+1][3]); } } } values_DNS.push_back(inValues_temp); } } void getResults(SuperLattice3D& sLattice, UnitConverter const& converter, int iT, SuperGeometry3D& superGeometry, Timer& timer, Dynamics* bulkDynamics) { OstreamManager clout(std::cout,"getResults"); SuperVTMwriter3D vtmWriter("tgv3d"); if (iT == 0) { // Writes the geometry, cuboid no. and rank no. as vti file for visualization SuperLatticeGeometry3D geometry(sLattice, superGeometry); SuperLatticeCuboid3D cuboid(sLattice); SuperLatticeRank3D rank(sLattice); superGeometry.rename(0,2); vtmWriter.write(geometry); vtmWriter.write(cuboid); vtmWriter.write(rank); vtmWriter.createMasterFile(); if (plotDNS==true) { getDNSValues(); } } if (iT%converter.getLatticeTime(vtkSave) == 0) { SuperLatticePhysVelocity3D velocity(sLattice, converter); SuperLatticePhysPressure3D pressure(sLattice, converter); vtmWriter.addFunctor( velocity ); vtmWriter.addFunctor( pressure ); vtmWriter.write(iT); // write output of velocity as JPEG SuperEuklidNorm3D normVel( velocity ); BlockReduction3D2D planeReduction( normVel, {0, 0, 1} ); heatmap::write(planeReduction, iT); timer.update(iT); timer.printStep(2); sLattice.getStatistics().print(iT,converter.getPhysTime( iT )); } static Gnuplot gplot("Turbulence_Dissipation_Rate"); if (iT%converter.getLatticeTime(gnuplotSave) == 0) { int input[3]; T output[1]; #if defined (finiteDiff) std::list matNumber; matNumber.push_back(1); SuperLatticePhysDissipationFD3D diss(superGeometry, sLattice, matNumber, converter); #if !defined (DNS) SuperLatticePhysEffectiveDissipationFD3D effectiveDiss(superGeometry, sLattice, matNumber, converter, *(dynamic_cast*>(bulkDynamics))); #endif #else SuperLatticePhysDissipation3D diss(sLattice, converter); #if !defined (DNS) SuperLatticePhysEffevtiveDissipation3D effectiveDiss(sLattice, converter, smagoConst, *(dynamic_cast*>(bulkDynamics))); #endif #endif SuperIntegral3D integralDiss(diss, superGeometry, 1); integralDiss(output, input); T diss_mol = output[0]; diss_mol /= volume; T diss_eff = diss_mol; #if !defined (DNS) SuperIntegral3D integralEffectiveDiss(effectiveDiss, superGeometry, 1); integralEffectiveDiss(output, input); diss_eff = output[0]; diss_eff /= volume; #endif T diss_eddy = diss_eff - diss_mol; if(plotDNS==true) { int step = converter.getPhysTime(iT) / gnuplotSave + 0.5; gplot.setData(converter.getPhysTime(iT), {diss_mol, diss_eddy, diss_eff, values_DNS[step][1]}, {"molecular dissipation rate", "eddy dissipation rate", "effective dissipation rate" ,"Brachet et al."}, "bottom right"); } else { gplot.setData(converter.getPhysTime(iT), {diss_mol, diss_eddy, diss_eff}, {"molecular dissipation rate", "eddy dissipation rate", "effective dissipation rate"}, "bottom right"); } gplot.writePNG(); } /// write pdf at last time step if (iT == converter.getLatticeTime(maxPhysT)-1) { gplot.writePDF(); } return; } int main(int argc, char* argv[]) { /// === 1st Step: Initialization === olbInit(&argc, &argv); singleton::directories().setOutputDir("./tmp/"); OstreamManager clout( std::cout,"main" ); UnitConverterFromResolutionAndRelaxationTime converter( int {int(std::nearbyint(N/(2*pi)))}, // resolution: number of voxels per charPhysL (T) 0.507639, // latticeRelaxationTime: relaxation time, have to be greater than 0.5! (T) 1, // charPhysLength: reference length of simulation geometry (T) 1, // charPhysVelocity: maximal/highest expected velocity during simulation in __m / s__ (T) 1./Re, // physViscosity: physical kinematic viscosity in __m^2 / s__ (T) 1.0 // physDensity: physical density in __kg / m^3__ ); // Prints the converter log as console output converter.print(); // Writes the converter log in a file converter.write("tgv3d"); #ifdef PARALLEL_MODE_MPI const int noOfCuboids = 2 * singleton::mpi().getSize(); #else const int noOfCuboids = 1; #endif CuboidGeometry3D cuboidGeometry(0, 0, 0, converter.getConversionFactorLength(), N, N, N, noOfCuboids); cuboidGeometry.setPeriodicity(true, true, true); HeuristicLoadBalancer loadBalancer(cuboidGeometry); // === 2nd Step: Prepare Geometry === SuperGeometry3D superGeometry(cuboidGeometry, loadBalancer, 3); prepareGeometry(superGeometry); /// === 3rd Step: Prepare Lattice === SuperLattice3D sLattice(superGeometry); std::unique_ptr> bulkDynamics; const T omega = converter.getLatticeRelaxationFrequency(); #if defined(RLB) bulkDynamics.reset(new RLBdynamics(omega, instances::getBulkMomenta())); #elif defined(DNS) bulkDynamics.reset(new BGKdynamics(omega, instances::getBulkMomenta())); #elif defined(WALE) bulkDynamics.reset(new WALEBGKdynamics(omega, instances::getBulkMomenta(), smagoConst)); #elif defined(ShearSmagorinsky) bulkDynamics.reset(new ShearSmagorinskyBGKdynamics(omega, instances::getBulkMomenta(), smagoConst)); #elif defined(Krause) bulkDynamics.reset(new KrauseBGKdynamics(omega, instances::getBulkMomenta(), smagoConst)); #elif defined(ConsistentStrainSmagorinsky) bulkDynamics.reset(new ConStrainSmagorinskyBGKdynamics(omega, instances::getBulkMomenta(), smagoConst)); #else //DNS Simulation bulkDynamics.reset(new SmagorinskyBGKdynamics(omega, instances::getBulkMomenta(), smagoConst)); #endif prepareLattice(sLattice, converter, *bulkDynamics, superGeometry); #if defined(WALE) std::list mat; mat.push_back(1); std::unique_ptr;SuperLatticeF3D> functor(new SuperLatticeVelocityGradientFD3D(superGeometry, sLattice, mat)); #endif /// === 4th Step: Main Loop with Timer === Timer timer(converter.getLatticeTime(maxPhysT), superGeometry.getStatistics().getNvoxel() ); timer.start(); // === 5th Step: Definition of Initial and Boundary Conditions === setBoundaryValues(sLattice, converter, superGeometry); for (int iT = 0; iT <= converter.getLatticeTime(maxPhysT); ++iT) { #if defined(WALE) sLattice.defineField(superGeometry, 1, *functor); #endif /// === 6th Step: Computation and Output of the Results === getResults(sLattice, converter, iT, superGeometry, timer, bulkDynamics.get()); /// === 7th Step: Collide and Stream Execution === sLattice.collideAndStream(); } timer.stop(); timer.printSummary(); return 0; }