/* This file is part of the OpenLB library
*
* Copyright (C) 2008 Orestis Malaspinas, Andrea Parmigiani
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef ADVECTION_DIFFUSION_BOUNDARY_INSTANTIATOR_3D_HH
#define ADVECTION_DIFFUSION_BOUNDARY_INSTANTIATOR_3D_HH
#include "advectionDiffusionBoundaryInstantiator3D.h"
#include "advectionDiffusionBoundaryCondition3D.h"
#include "advectionDiffusionBoundaryCondition3D.hh"
#include "advectionDiffusionBoundaryPostProcessor3D.hh"
#include "functors/lattice/indicator/blockIndicatorF3D.h"
#include "dynamics/rtlbmDescriptors.h"
namespace olb {
///////// class AdvectionDiffusionBoundaryConditionInstantiator3D ////////////////////////
template
AdvectionDiffusionBoundaryConditionInstantiator3D::
AdvectionDiffusionBoundaryConditionInstantiator3D(BlockLatticeStructure3D& block)
: _block(block)
{
}
template
AdvectionDiffusionBoundaryConditionInstantiator3D::
~AdvectionDiffusionBoundaryConditionInstantiator3D()
{
for (auto &iDynamics : dynamicsVector) {
delete iDynamics;
}
for (auto &iMomenta : momentaVector) {
delete iMomenta;
}
}
// ---- flat -------------
template
template
void AdvectionDiffusionBoundaryConditionInstantiator3D::
addTemperatureBoundary(int x0, int x1, int y0, int y1, int z0, int z1, T omega)
{
OLB_PRECONDITION(x0==x1 || y0==y1 || z0==z1);
for (int iX=x0; iX<=x1; ++iX) {
for (int iY=y0; iY<=y1; ++iY) {
for (int iZ=z0; iZ<=z1; ++iZ) {
Momenta* momenta
= BoundaryManager::template getTemperatureBoundaryMomenta();
Dynamics* dynamics
= BoundaryManager::template getTemperatureBoundaryDynamics(omega, *momenta);
_block.defineDynamics(iX,iX,iY,iY,iZ,iZ, dynamics);
momentaVector.push_back(momenta);
dynamicsVector.push_back(dynamics);
}
}
}
PostProcessorGenerator3D* postProcessor
= BoundaryManager::template getTemperatureBoundaryProcessor(x0,x1, y0,y1, z0,z1);
if (postProcessor) {
_block.addPostProcessor(*postProcessor);
}
}
// ---- edges -------------
template
template
void AdvectionDiffusionBoundaryConditionInstantiator3D::
addTemperatureBoundaryEdge(int x0, int x1, int y0, int y1, int z0, int z1, T omega)
{
OLB_PRECONDITION(
( x0==x1 && y0==y1 ) ||
( x0==x1 && z0==z1 ) ||
( y0==y1 && z0==z1 ) );
for (int iX=x0; iX<=x1; ++iX) {
for (int iY=y0; iY<=y1; ++iY) {
for (int iZ=z0; iZ<=z1; ++iZ) {
Momenta* momenta
= BoundaryManager::template getTemperatureBoundaryEdgeMomenta();
Dynamics* dynamics
= BoundaryManager::template getTemperatureBoundaryEdgeDynamics(omega, *momenta);
_block.defineDynamics(iX,iX,iY,iY,iZ,iZ, dynamics);
momentaVector.push_back(momenta);
dynamicsVector.push_back(dynamics);
}
}
}
PostProcessorGenerator3D* postProcessor
= BoundaryManager::template getTemperatureBoundaryEdgeProcessor(x0,x1, y0,y1, z0,z1);
if (postProcessor) {
_block.addPostProcessor(*postProcessor);
}
}
// ---- corner -------------
template
template
void AdvectionDiffusionBoundaryConditionInstantiator3D::
addTemperatureBoundaryCorner(int x, int y, int z, T omega)
{
Momenta* momenta
= BoundaryManager::template getTemperatureBoundaryCornerMomenta();
Dynamics* dynamics
= BoundaryManager::template getTemperatureBoundaryCornerDynamics(omega, *momenta);
_block.defineDynamics(x,x,y,y,z,z, dynamics);
PostProcessorGenerator3D* postProcessor
= BoundaryManager::template getTemperatureBoundaryCornerProcessor(x, y, z);
if (postProcessor) {
_block.addPostProcessor(*postProcessor);
}
}
template
void AdvectionDiffusionBoundaryConditionInstantiator3D::
addTemperatureBoundary(BlockIndicatorF3D& indicator,
int x0, int x1, int y0, int y1, int z0, int z1, T omega)
{
auto& blockGeometryStructure = indicator.getBlockGeometryStructure();
std::vector discreteNormal(4,0);
for (int iX = x0; iX <= x1; ++iX) {
for (int iY = y0; iY <= y1; ++iY) {
for (int iZ = z0; iZ <= z1; ++iZ) {
if (indicator(iX, iY, iZ)) {
discreteNormal = blockGeometryStructure.getStatistics().getType(iX, iY, iZ);
if (discreteNormal[0] == 0) { // flat
if (discreteNormal[1] != 0 && discreteNormal[1] == -1) {
addTemperatureBoundary<0,-1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[1] != 0 && discreteNormal[1] == 1) {
addTemperatureBoundary<0,1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[2] != 0 && discreteNormal[2] == -1) {
addTemperatureBoundary<1,-1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[2] != 0 && discreteNormal[2] == 1) {
addTemperatureBoundary<1,1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[3] != 0 && discreteNormal[3] == -1) {
addTemperatureBoundary<2,-1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[3] != 0 && discreteNormal[3] == 1) {
addTemperatureBoundary<2,1>(iX,iX,iY,iY,iZ,iZ, omega);
}
}
else if (discreteNormal[0] == 1) { // corner
if (discreteNormal[1] == 1 && discreteNormal[2] == 1 && discreteNormal[3] == 1) {
addTemperatureBoundaryCorner<1,1,1>(iX,iY,iZ, omega);
}
else if (discreteNormal[1] == 1 && discreteNormal[2] == -1 && discreteNormal[3] == 1) {
addTemperatureBoundaryCorner<1,-1,1>(iX,iY,iZ, omega);
}
else if (discreteNormal[1] == 1 && discreteNormal[2] == 1 && discreteNormal[3] == -1) {
addTemperatureBoundaryCorner<1,1,-1>(iX,iY,iZ, omega);
}
else if (discreteNormal[1] == 1 && discreteNormal[2] == -1 && discreteNormal[3] == -1) {
addTemperatureBoundaryCorner<1,-1,-1>(iX,iY,iZ, omega);
}
else if (discreteNormal[1] == -1 && discreteNormal[2] == 1 && discreteNormal[3] == 1) {
addTemperatureBoundaryCorner<-1,1,1>(iX,iY,iZ, omega);
}
else if (discreteNormal[1] == -1 && discreteNormal[2] == -1 && discreteNormal[3] == 1) {
addTemperatureBoundaryCorner<-1,-1,1>(iX,iY,iZ, omega);
}
else if (discreteNormal[1] == -1 && discreteNormal[2] == 1 && discreteNormal[3] == -1) {
addTemperatureBoundaryCorner<-1,1,-1>(iX,iY,iZ, omega);
}
else if (discreteNormal[1] == -1 && discreteNormal[2] == -1 && discreteNormal[3] == -1) {
addTemperatureBoundaryCorner<-1,-1,-1>(iX,iY,iZ, omega);
}
}
else if (discreteNormal[0] == 3) { // edge
if (discreteNormal[1] == 0 && discreteNormal[2] == 1 && discreteNormal[3] == 1) {
addTemperatureBoundaryEdge<0,1,1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[1] == 0 && discreteNormal[2] == -1 && discreteNormal[3] == 1) {
addTemperatureBoundaryEdge<0,-1,1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[1] == 0 && discreteNormal[2] == 1 && discreteNormal[3] == -1) {
addTemperatureBoundaryEdge<0,1,-1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[1] == 0 && discreteNormal[2] == -1 && discreteNormal[3] == -1) {
addTemperatureBoundaryEdge<0,-1,-1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[1] == 1 && discreteNormal[2] == 0 && discreteNormal[3] == 1) {
addTemperatureBoundaryEdge<1,1,1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[1] == -1 && discreteNormal[2] == 0 && discreteNormal[3] == 1) {
addTemperatureBoundaryEdge<1,1,-1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[1] == 1 && discreteNormal[2] == 0 && discreteNormal[3] == -1) {
addTemperatureBoundaryEdge<1,-1,1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[1] == -1 && discreteNormal[2] == 0 && discreteNormal[3] == -1) {
addTemperatureBoundaryEdge<1,-1,-1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[1] == 1 && discreteNormal[2] == 1 && discreteNormal[3] == 0) {
addTemperatureBoundaryEdge<2,1,1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[1] == -1 && discreteNormal[2] == 1 && discreteNormal[3] == 0) {
addTemperatureBoundaryEdge<2,-1,1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[1] == 1 && discreteNormal[2] == -1 && discreteNormal[3] == 0) {
addTemperatureBoundaryEdge<2,1,-1>(iX,iX,iY,iY,iZ,iZ, omega);
}
else if (discreteNormal[1] == -1 && discreteNormal[2] == -1 && discreteNormal[3] == 0) {
addTemperatureBoundaryEdge<2,-1,-1>(iX,iX,iY,iY,iZ,iZ, omega);
}
}
}
}
}
}
}
template
void AdvectionDiffusionBoundaryConditionInstantiator3D::
addConvectionBoundary(BlockIndicatorF3D& indicator,
int x0, int x1, int y0, int y1, int z0, int z1)
{
std::vector discreteNormal(4, 0);
for (int iX = x0; iX <= x1; ++iX) {
for (int iY = y0; iY <= y1; ++iY) {
for (int iZ = z0; iZ <= z1; ++iZ) {
if (indicator(iX, iY, iZ)) {
discreteNormal = indicator.getBlockGeometryStructure().getStatistics().getType(iX, iY, iZ);
if (discreteNormal[1]!=0 || discreteNormal[2]!=0 || discreteNormal[3]!=0) {
PostProcessorGenerator3D* postProcessor = new ConvectionBoundaryProcessorGenerator3D(iX, iX, iY, iY, iZ, iZ, -discreteNormal[1], -discreteNormal[2], -discreteNormal[3]);
if (postProcessor) {
_block.addPostProcessor(*postProcessor);
}
}
else {
// cout << "Warning: Could not addConvectionBoundary (" << iX << ", " << iY << ", " << iZ << "), discreteNormal=(" << discreteNormal[0] <<","<< discreteNormal[1] <<","<< discreteNormal[2] << ", " << discreteNormal[3] << "), set to bounceBack" << std::endl;
}
}
}
}
}
}
template
void AdvectionDiffusionBoundaryConditionInstantiator3D::
addZeroDistributionBoundary(BlockIndicatorF3D& indicator,
int x0, int x1, int y0, int y1, int z0, int z1)
{
auto& blockGeometryStructure = indicator.getBlockGeometryStructure();
std::vector discreteNormal(4, 0);
for (int iX = x0; iX <= x1; ++iX) {
for (int iY = y0; iY <= y1; ++iY) {
for (int iZ = z0; iZ <= z1; ++iZ) {
if (indicator(iX, iY, iZ)) {
discreteNormal = blockGeometryStructure.getStatistics().getType(iX, iY, iZ);
if (discreteNormal[1]!=0 || discreteNormal[2]!=0 || discreteNormal[3]!=0) {
PostProcessorGenerator3D* postProcessor = new ZeroDistributionBoundaryProcessorGenerator3D(iX, iX, iY, iY, iZ, iZ, -discreteNormal[1], -discreteNormal[2], -discreteNormal[3]);
if (postProcessor) {
_block.addPostProcessor(*postProcessor);
}
}
else {
// cout << "Warning: Could not addZeroDistributionBoundary (" << iX << ", " << iY << ", " << iZ << "), discreteNormal=(" << discreteNormal[0] <<","<< discreteNormal[1] <<","<< discreteNormal[2] << "," << discreteNormal[3] << ")" << std::endl;
}
}
}
}
}
}
template
void AdvectionDiffusionBoundaryConditionInstantiator3D::
addExtFieldBoundary(BlockIndicatorF3D& indicator,
int offset, int x0, int x1, int y0, int y1, int z0, int z1)
{
auto& blockGeometryStructure = indicator.getBlockGeometryStructure();
std::vector discreteNormal(4, 0);
for (int iX = x0; iX <= x1; ++iX) {
for (int iY = y0; iY <= y1; ++iY) {
for (int iZ = z0; iZ <= z1; ++iZ) {
if (indicator(iX, iY, iZ)) {
discreteNormal = blockGeometryStructure.getStatistics().getType(iX, iY, iZ);
if (discreteNormal[1]!=0 || discreteNormal[2]!=0 || discreteNormal[3]!=0) {
PostProcessorGenerator3D* postProcessor = new ExtFieldBoundaryProcessorGenerator3D(iX, iX, iY, iY, iZ, iZ, -discreteNormal[1], -discreteNormal[2], -discreteNormal[3], offset);
if (postProcessor) {
_block.addPostProcessor(*postProcessor);
}
}
else {
// cout << "Warning: Could not addZeroDistributionBoundary (" << iX << ", " << iY << ", " << iZ << "), discreteNormal=(" << discreteNormal[0] <<","<< discreteNormal[1] <<","<< discreteNormal[2] << "," << discreteNormal[3] << ")" << std::endl;
}
}
}
}
}
}
}
#endif