/* This file is part of the OpenLB library
*
* Copyright (C) 2006, 2007 Jonas Latt
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* Generic version of the collision, which modifies the particle
* distribution functions, by Orestis Malaspinas.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef FD_BOUNDARIES_2D_H
#define FD_BOUNDARIES_2D_H
#include "core/postProcessing.h"
#include "momentaOnBoundaries.h"
#include "core/blockLattice2D.h"
namespace olb {
/**
* This class computes the skordos BC
* on a flat wall in 2D but with a limited number of terms added to the
* equilibrium distributions (i.e. only the Q_i : Pi term)
*/
template
class StraightFdBoundaryProcessor2D : public LocalPostProcessor2D {
public:
StraightFdBoundaryProcessor2D(int x0_, int x1_, int y0_, int y1_);
int extent() const override
{
return 1;
}
int extent(int whichDirection) const override
{
return 1;
}
void process(BlockLattice2D& blockLattice) override;
void processSubDomain ( BlockLattice2D& blockLattice,
int x0_, int x1_, int y0_, int y1_ ) override;
private:
template
void interpolateGradients (
BlockLattice2D const& blockLattice,
T velDeriv[DESCRIPTOR::d], int iX, int iY ) const;
private:
int x0, x1, y0, y1;
};
template
class StraightFdBoundaryProcessorGenerator2D : public PostProcessorGenerator2D {
public:
StraightFdBoundaryProcessorGenerator2D(int x0_, int x1_, int y0_, int y1_);
PostProcessor2D* generate() const override;
PostProcessorGenerator2D* clone() const override;
};
/**
* This class computes a convection BC on a flat wall in 2D
*/
template
class StraightConvectionBoundaryProcessor2D : public LocalPostProcessor2D {
public:
StraightConvectionBoundaryProcessor2D(int x0_, int x1_, int y0_, int y1_, T* uAv_ = NULL);
~StraightConvectionBoundaryProcessor2D() override;
int extent() const override
{
return 1;
}
int extent(int whichDirection) const override
{
return 1;
}
void process(BlockLattice2D& blockLattice) override;
void processSubDomain ( BlockLattice2D& blockLattice,
int x0_, int x1_, int y0_, int y1_ ) override;
private:
int x0, x1, y0, y1;
T*** saveCell;
T* uAv;
};
template
class StraightConvectionBoundaryProcessorGenerator2D : public PostProcessorGenerator2D {
public:
StraightConvectionBoundaryProcessorGenerator2D(int x0_, int x1_, int y0_, int y1_, T* uAv_ = NULL);
PostProcessor2D* generate() const override;
PostProcessorGenerator2D* clone() const override;
private:
T* uAv;
};
/**
* This class computes a slip BC in 2D
*/
template
class SlipBoundaryProcessor2D : public LocalPostProcessor2D {
public:
SlipBoundaryProcessor2D(int x0_, int x1_, int y0_, int y1_, int discreteNormalX_, int discreteNormalY_);
int extent() const override
{
return 0;
}
int extent(int whichDirection) const override
{
return 0;
}
void process(BlockLattice2D& blockLattice) override;
void processSubDomain ( BlockLattice2D& blockLattice,
int x0_, int x1_, int y0_, int y1_ ) override;
private:
int reflectionPop[DESCRIPTOR::q];
int x0, x1, y0, y1;
};
template
class SlipBoundaryProcessorGenerator2D : public PostProcessorGenerator2D {
public:
SlipBoundaryProcessorGenerator2D(int x0_, int x1_, int y0_, int y1_, int discreteNormalX_, int discreteNormalY_);
PostProcessor2D* generate() const override;
PostProcessorGenerator2D* clone() const override;
private:
int discreteNormalX;
int discreteNormalY;
};
/**
* This class computes a partial slip BC in 2D
*/
template
class PartialSlipBoundaryProcessor2D : public LocalPostProcessor2D {
public:
PartialSlipBoundaryProcessor2D(T tuner_, int x0_, int x1_, int y0_, int y1_, int discreteNormalX_, int discreteNormalY_);
int extent() const override
{
return 0;
}
int extent(int whichDirection) const override
{
return 0;
}
void process(BlockLattice2D& blockLattice) override;
void processSubDomain ( BlockLattice2D& blockLattice,
int x0_, int x1_, int y0_, int y1_ ) override;
private:
int reflectionPop[DESCRIPTOR::q];
int x0, x1, y0, y1;
T tuner;
};
template
class PartialSlipBoundaryProcessorGenerator2D : public PostProcessorGenerator2D {
public:
PartialSlipBoundaryProcessorGenerator2D(T tuner_, int x0_, int x1_, int y0_, int y1_, int discreteNormalX_, int discreteNormalY_);
PostProcessor2D* generate() const override;
PostProcessorGenerator2D* clone() const override;
private:
int discreteNormalX;
int discreteNormalY;
T tuner;
};
/**
* This class computes the skordos BC in 2D on a convex
* corner but with a limited number of terms added to the
* equilibrium distributions (i.e. only the Q_i : Pi term)
*/
template
class OuterVelocityCornerProcessor2D : public LocalPostProcessor2D {
public:
OuterVelocityCornerProcessor2D(int x_, int y_);
int extent() const override
{
return 2;
}
int extent(int whichDirection) const override
{
return 2;
}
void process(BlockLattice2D& blockLattice) override;
void processSubDomain(BlockLattice2D& blockLattice,
int x0_,int x1_,int y0_,int y1_ ) override;
private:
int x, y;
};
template
class OuterVelocityCornerProcessorGenerator2D : public PostProcessorGenerator2D {
public:
OuterVelocityCornerProcessorGenerator2D(int x_, int y_);
PostProcessor2D* generate() const override;
PostProcessorGenerator2D* clone() const override;
};
/// PostProcessor for the wetting boundary condition in the free energy model. This is
/// required to set rho on the boundary (using the denisty of the neighbouring cell in
/// direction of inwards facing normal at the boundary), as the coupling between the
/// lattices requires the calculation of a density gradient.
template
class FreeEnergyWallProcessor2D : public LocalPostProcessor2D {
public:
FreeEnergyWallProcessor2D(int x0_, int x1_, int y0_, int y1_,
int discreteNormalX_, int discreteNormalY_, T addend_);
int extent() const override
{
return 2;
}
int extent(int whichDirection) const override
{
return 2;
}
void process(BlockLattice2D& blockLattice) override;
void processSubDomain(BlockLattice2D& blockLattice,
int x0_,int x1_,int y0_,int y1_ ) override;
private:
int x0, x1, y0, y1;
int discreteNormalX, discreteNormalY;
T addend;
};
/// Generator class for the FreeEnergyWall PostProcessor handling the wetting boundary condition.
template
class FreeEnergyWallProcessorGenerator2D : public PostProcessorGenerator2D {
public:
FreeEnergyWallProcessorGenerator2D(int x0_, int x1_, int y0_, int y1_,
int discreteNormalX_, int discreteNormalY_, T addend_);
PostProcessor2D* generate() const override;
PostProcessorGenerator2D* clone() const override;
private:
int discreteNormalX;
int discreteNormalY;
T addend;
};
/// PostProcessor for the chemical potential boundary condition in the free energy model.
/// The chemical potentials on the boundary are set equal to the chemical potential on the
/// fluid cell normal to the boundary. This is necessary because the coupling between the
/// lattices requires the calculation of the gradient of the chemical potential.
///
/// It would be preferable if this were implemented as a lattice coupling that ran
/// between the chemical potential and force lattice couplings. However there is no
/// access to the discrete normals in lattice couplings.
template
class FreeEnergyChemPotBoundaryProcessor2D : public LocalPostProcessor2D {
public:
FreeEnergyChemPotBoundaryProcessor2D(int x0_, int x1_, int y0_, int y1_,
int discreteNormalX_, int discreteNormalY_, int latticeNumber_);
int extent() const override
{
return 2;
}
int extent(int whichDirection) const override
{
return 2;
}
void process(BlockLattice2D& blockLattice) override;
void processSubDomain(BlockLattice2D& blockLattice,
int x0_,int x1_,int y0_,int y1_ ) override;
private:
int x0, x1, y0, y1;
int discreteNormalX, discreteNormalY;
int latticeNumber;
};
/// Generator class for the FreeEnergyChemPotBoundary PostProcessor.
template
class FreeEnergyChemPotBoundaryProcessorGenerator2D : public PostProcessorGenerator2D {
public:
FreeEnergyChemPotBoundaryProcessorGenerator2D(int x0_, int x1_, int y0_, int y1_,
int discreteNormalX_, int discreteNormalY_, int latticeNumber_);
PostProcessor2D* generate() const override;
PostProcessorGenerator2D* clone() const override;
private:
int discreteNormalX;
int discreteNormalY;
int latticeNumber;
};
/// PostProcessor for pressure / velocity outflow boundaries in the free energy model.
/// The density / order parameters are prescribed to the outflow nodes such that they
/// obey the local-velocity convective boundary condition given in Lou, Gou, Shi (2013).
template
class FreeEnergyConvectiveProcessor2D : public LocalPostProcessor2D {
public:
FreeEnergyConvectiveProcessor2D(int x0_, int x1_, int y0_, int y1_,
int discreteNormalX_, int discreteNormalY_);
int extent() const override
{
return 2;
}
int extent(int whichDirection) const override
{
return 2;
}
void process(BlockLattice2D& blockLattice) override;
void processSubDomain(BlockLattice2D& blockLattice,
int x0_,int x1_,int y0_,int y1_ ) override;
private:
int x0, x1, y0, y1;
int discreteNormalX, discreteNormalY;
};
/// Generator class for the FreeEnergyConvective post processor.
template
class FreeEnergyConvectiveProcessorGenerator2D : public PostProcessorGenerator2D {
public:
FreeEnergyConvectiveProcessorGenerator2D(int x0_, int x1_, int y0_, int y1_,
int discreteNormalX_, int discreteNormalY_);
PostProcessor2D* generate() const override;
PostProcessorGenerator2D* clone() const override;
private:
int discreteNormalX;
int discreteNormalY;
};
}
#endif