/* This file is part of the OpenLB library * * Copyright (C) 2006, 2007 Jonas Latt * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * Generic collision, which modifies the particle distribution * functions, implemented by Orestis Malaspinas, 2007 * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #ifndef BOUNDARY_POST_PROCESSORS_3D_H #define BOUNDARY_POST_PROCESSORS_3D_H #include "core/postProcessing.h" #include "momentaOnBoundaries.h" #include "core/blockLattice3D.h" namespace olb { /** * This class computes the skordos BC * on a plane wall in 3D but with a limited number of terms added to the * equilibrium distributions (i.e. only the Q_i : Pi term) */ template class PlaneFdBoundaryProcessor3D : public LocalPostProcessor3D { public: PlaneFdBoundaryProcessor3D (int x0_, int x1_, int y0_, int y1_, int z0_, int z1_); int extent() const override { return 1; } int extent(int whichDirection) const override { return 1; } void process(BlockLattice3D& blockLattice) override; void processSubDomain(BlockLattice3D& blockLattice, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ) override; private: template void interpolateGradients ( BlockLattice3D const& blockLattice, T velDeriv[DESCRIPTOR::d], int iX, int iY, int iZ ) const; private: int x0, x1, y0, y1, z0, z1; }; template class PlaneFdBoundaryProcessorGenerator3D : public PostProcessorGenerator3D { public: PlaneFdBoundaryProcessorGenerator3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_); PostProcessor3D* generate() const override; PostProcessorGenerator3D* clone() const override; }; /** * This class computes a convection BC on a flat wall in 2D */ template class StraightConvectionBoundaryProcessor3D : public LocalPostProcessor3D { public: StraightConvectionBoundaryProcessor3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, T* uAv_ = NULL); ~StraightConvectionBoundaryProcessor3D() override; int extent() const override { return 1; } int extent(int whichDirection) const override { return 1; } void process(BlockLattice3D& blockLattice) override; void processSubDomain ( BlockLattice3D& blockLattice, int x0_, int x1_, int y0_, int y1_ , int z0_, int z1_) override; private: int x0, x1, y0, y1, z0, z1; T**** saveCell; T* uAv; }; template class StraightConvectionBoundaryProcessorGenerator3D : public PostProcessorGenerator3D { public: StraightConvectionBoundaryProcessorGenerator3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, T* uAv_ = NULL); PostProcessor3D* generate() const override; PostProcessorGenerator3D* clone() const override; private: T* uAv; }; /** * This class computes the skordos BC * on a convex edge wall in 3D but with a limited number of terms added to the * equilibrium distributions (i.e. only the Q_i : Pi term) */ template class OuterVelocityEdgeProcessor3D : public LocalPostProcessor3D { public: enum { direction1 = (plane+1)%3, direction2 = (plane+2)%3 }; public: OuterVelocityEdgeProcessor3D ( int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ); int extent() const override { return 2; } int extent(int whichDirection) const override { return 2; } void process(BlockLattice3D& blockLattice) override; void processSubDomain(BlockLattice3D& blockLattice, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ) override; private: T getNeighborRho(int x, int y, int z, int step1, int step2, BlockLattice3D const& blockLattice); template void interpolateGradients ( BlockLattice3D const& blockLattice, T velDeriv[DESCRIPTOR::d], int iX, int iY, int iZ ) const; private: int x0, x1, y0, y1, z0, z1; }; template class OuterVelocityEdgeProcessorGenerator3D : public PostProcessorGenerator3D { public: OuterVelocityEdgeProcessorGenerator3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_); PostProcessor3D* generate() const override; PostProcessorGenerator3D* clone() const override; }; template class OuterVelocityCornerProcessor3D : public LocalPostProcessor3D { public: OuterVelocityCornerProcessor3D(int x_, int y_, int z_); int extent() const override { return 2; } int extent(int whichDirection) const override { return 2; } void process(BlockLattice3D& blockLattice) override; void processSubDomain(BlockLattice3D& blockLattice, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ) override; private: int x,y,z; }; template class OuterVelocityCornerProcessorGenerator3D : public PostProcessorGenerator3D { public: OuterVelocityCornerProcessorGenerator3D(int x_, int y_, int z_); PostProcessor3D* generate() const override; PostProcessorGenerator3D* clone() const override; }; /** * This class computes a slip BC in 3D */ template class SlipBoundaryProcessor3D : public LocalPostProcessor3D { public: SlipBoundaryProcessor3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_); int extent() const override { return 0; } int extent(int whichDirection) const override { return 0; } void process(BlockLattice3D& blockLattice) override; void processSubDomain ( BlockLattice3D& blockLattice, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ) override; private: int reflectionPop[DESCRIPTOR::q]; int x0, x1, y0, y1, z0, z1; }; template class SlipBoundaryProcessorGenerator3D : public PostProcessorGenerator3D { public: SlipBoundaryProcessorGenerator3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_); PostProcessor3D* generate() const override; PostProcessorGenerator3D* clone() const override; private: int discreteNormalX; int discreteNormalY; int discreteNormalZ; }; /** * This class computes a partial slip BC in 3D */ template class PartialSlipBoundaryProcessor3D : public LocalPostProcessor3D { public: PartialSlipBoundaryProcessor3D(T tuner_, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_); int extent() const override { return 0; } int extent(int whichDirection) const override { return 0; } void process(BlockLattice3D& blockLattice) override; void processSubDomain ( BlockLattice3D& blockLattice, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ) override; private: int reflectionPop[DESCRIPTOR::q]; int x0, x1, y0, y1, z0, z1; T tuner; }; template class PartialSlipBoundaryProcessorGenerator3D : public PostProcessorGenerator3D { public: PartialSlipBoundaryProcessorGenerator3D(T tuner_, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_); PostProcessor3D* generate() const override; PostProcessorGenerator3D* clone() const override; private: int discreteNormalX; int discreteNormalY; int discreteNormalZ; T tuner; }; /// PostProcessor for the wetting boundary condition in the free energy model. This is /// required to set rho on the boundary (using the denisty of the neighbouring cell in /// direction of inwards facing normal at the boundary), as the coupling between the /// lattices requires the calculation of a density gradient. template class FreeEnergyWallProcessor3D : public LocalPostProcessor3D { public: FreeEnergyWallProcessor3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_, T addend_); int extent() const override { return 2; } int extent(int whichDirection) const override { return 2; } void process(BlockLattice3D& blockLattice) override; void processSubDomain(BlockLattice3D& blockLattice, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ) override; private: int x0, x1, y0, y1, z0, z1; int discreteNormalX, discreteNormalY, discreteNormalZ; T addend; }; /// Generator class for the FreeEnergyWall PostProcessor handling the wetting boundary condition. template class FreeEnergyWallProcessorGenerator3D : public PostProcessorGenerator3D { public: FreeEnergyWallProcessorGenerator3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_, T addend_); PostProcessor3D* generate() const override; PostProcessorGenerator3D* clone() const override; private: int discreteNormalX; int discreteNormalY; int discreteNormalZ; T addend; }; /// PostProcessor for the chemical potential boundary condition in the free energy model. /// The chemical potentials on the boundary are set equal to the chemical potential on the /// fluid cell normal to the boundary. This is necessary because the coupling between the /// lattices requires the calculation of the gradient of the chemical potential. /// /// It would be preferable if this were implemented as a lattice coupling that ran /// between the chemical potential and force lattice couplings. However there is no /// access to the discrete normals in lattice couplings. template class FreeEnergyChemPotBoundaryProcessor3D : public LocalPostProcessor3D { public: FreeEnergyChemPotBoundaryProcessor3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_, int latticeNumber_); int extent() const override { return 2; } int extent(int whichDirection) const override { return 2; } void process(BlockLattice3D& blockLattice) override; void processSubDomain(BlockLattice3D& blockLattice, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ) override; private: int x0, x1, y0, y1, z0, z1; int discreteNormalX, discreteNormalY, discreteNormalZ; int latticeNumber; }; /// Generator class for the FreeEnergyChemPotBoundary PostProcessor. template class FreeEnergyChemPotBoundaryProcessorGenerator3D : public PostProcessorGenerator3D { public: FreeEnergyChemPotBoundaryProcessorGenerator3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_, int latticeNumber_); PostProcessor3D* generate() const override; PostProcessorGenerator3D* clone() const override; private: int discreteNormalX; int discreteNormalY; int discreteNormalZ; int latticeNumber; }; /// PostProcessor for the density / velocity outflow boundaries in the free energy model. /// The density / order parameters are prescribed to the outflow nodes such that they obey /// the local-velocity convective boundary condition given in Lou, Gou, Shi (2013). template class FreeEnergyConvectiveProcessor3D : public LocalPostProcessor3D { public: FreeEnergyConvectiveProcessor3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_); int extent() const override { return 2; } int extent(int whichDirection) const override { return 2; } void process(BlockLattice3D& blockLattice) override; void processSubDomain(BlockLattice3D& blockLattice, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ) override; private: int x0, x1, y0, y1, z0, z1; int discreteNormalX, discreteNormalY, discreteNormalZ; }; /// Generator class for the FreeEnergyConvective post processor. template class FreeEnergyConvectiveProcessorGenerator3D : public PostProcessorGenerator3D { public: FreeEnergyConvectiveProcessorGenerator3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_); PostProcessor3D* generate() const override; PostProcessorGenerator3D* clone() const override; private: int discreteNormalX; int discreteNormalY; int discreteNormalZ; }; } #endif