/* This file is part of the OpenLB library
*
* Copyright (C) 2006, 2007 Jonas Latt
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* Generic collision, which modifies the particle distribution
* functions, implemented by Orestis Malaspinas, 2007
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#ifndef BOUNDARY_POST_PROCESSORS_3D_H
#define BOUNDARY_POST_PROCESSORS_3D_H
#include "core/postProcessing.h"
#include "momentaOnBoundaries.h"
#include "core/blockLattice3D.h"
namespace olb {
/**
* This class computes the skordos BC
* on a plane wall in 3D but with a limited number of terms added to the
* equilibrium distributions (i.e. only the Q_i : Pi term)
*/
template
class PlaneFdBoundaryProcessor3D : public LocalPostProcessor3D {
public:
PlaneFdBoundaryProcessor3D (int x0_, int x1_, int y0_, int y1_, int z0_, int z1_);
int extent() const override
{
return 1;
}
int extent(int whichDirection) const override
{
return 1;
}
void process(BlockLattice3D& blockLattice) override;
void processSubDomain(BlockLattice3D& blockLattice,
int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ) override;
private:
template
void interpolateGradients (
BlockLattice3D const& blockLattice,
T velDeriv[DESCRIPTOR::d], int iX, int iY, int iZ ) const;
private:
int x0, x1, y0, y1, z0, z1;
};
template
class PlaneFdBoundaryProcessorGenerator3D : public PostProcessorGenerator3D {
public:
PlaneFdBoundaryProcessorGenerator3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_);
PostProcessor3D* generate() const override;
PostProcessorGenerator3D* clone() const override;
};
/**
* This class computes a convection BC on a flat wall in 2D
*/
template
class StraightConvectionBoundaryProcessor3D : public LocalPostProcessor3D {
public:
StraightConvectionBoundaryProcessor3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, T* uAv_ = NULL);
~StraightConvectionBoundaryProcessor3D() override;
int extent() const override
{
return 1;
}
int extent(int whichDirection) const override
{
return 1;
}
void process(BlockLattice3D& blockLattice) override;
void processSubDomain ( BlockLattice3D& blockLattice,
int x0_, int x1_, int y0_, int y1_ , int z0_, int z1_) override;
private:
int x0, x1, y0, y1, z0, z1;
T**** saveCell;
T* uAv;
};
template
class StraightConvectionBoundaryProcessorGenerator3D : public PostProcessorGenerator3D {
public:
StraightConvectionBoundaryProcessorGenerator3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, T* uAv_ = NULL);
PostProcessor3D* generate() const override;
PostProcessorGenerator3D* clone() const override;
private:
T* uAv;
};
/**
* This class computes the skordos BC
* on a convex edge wall in 3D but with a limited number of terms added to the
* equilibrium distributions (i.e. only the Q_i : Pi term)
*/
template
class OuterVelocityEdgeProcessor3D : public LocalPostProcessor3D {
public:
enum { direction1 = (plane+1)%3, direction2 = (plane+2)%3 };
public:
OuterVelocityEdgeProcessor3D (
int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ );
int extent() const override
{
return 2;
}
int extent(int whichDirection) const override
{
return 2;
}
void process(BlockLattice3D& blockLattice) override;
void processSubDomain(BlockLattice3D& blockLattice,
int x0_, int x1_, int y0_, int y1_,
int z0_, int z1_ ) override;
private:
T getNeighborRho(int x, int y, int z, int step1, int step2,
BlockLattice3D const& blockLattice);
template
void interpolateGradients (
BlockLattice3D const& blockLattice,
T velDeriv[DESCRIPTOR::d], int iX, int iY, int iZ ) const;
private:
int x0, x1, y0, y1, z0, z1;
};
template
class OuterVelocityEdgeProcessorGenerator3D
: public PostProcessorGenerator3D {
public:
OuterVelocityEdgeProcessorGenerator3D(int x0_, int x1_, int y0_, int y1_,
int z0_, int z1_);
PostProcessor3D* generate() const override;
PostProcessorGenerator3D* clone() const override;
};
template
class OuterVelocityCornerProcessor3D : public LocalPostProcessor3D {
public:
OuterVelocityCornerProcessor3D(int x_, int y_, int z_);
int extent() const override
{
return 2;
}
int extent(int whichDirection) const override
{
return 2;
}
void process(BlockLattice3D& blockLattice) override;
void processSubDomain(BlockLattice3D& blockLattice,
int x0_, int x1_, int y0_, int y1_,
int z0_, int z1_ ) override;
private:
int x,y,z;
};
template
class OuterVelocityCornerProcessorGenerator3D
: public PostProcessorGenerator3D {
public:
OuterVelocityCornerProcessorGenerator3D(int x_, int y_, int z_);
PostProcessor3D* generate() const override;
PostProcessorGenerator3D* clone() const override;
};
/**
* This class computes a slip BC in 3D
*/
template
class SlipBoundaryProcessor3D : public LocalPostProcessor3D {
public:
SlipBoundaryProcessor3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_);
int extent() const override
{
return 0;
}
int extent(int whichDirection) const override
{
return 0;
}
void process(BlockLattice3D& blockLattice) override;
void processSubDomain ( BlockLattice3D& blockLattice,
int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ) override;
private:
int reflectionPop[DESCRIPTOR::q];
int x0, x1, y0, y1, z0, z1;
};
template
class SlipBoundaryProcessorGenerator3D : public PostProcessorGenerator3D {
public:
SlipBoundaryProcessorGenerator3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_);
PostProcessor3D* generate() const override;
PostProcessorGenerator3D* clone() const override;
private:
int discreteNormalX;
int discreteNormalY;
int discreteNormalZ;
};
/**
* This class computes a partial slip BC in 3D
*/
template
class PartialSlipBoundaryProcessor3D : public LocalPostProcessor3D {
public:
PartialSlipBoundaryProcessor3D(T tuner_, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_);
int extent() const override
{
return 0;
}
int extent(int whichDirection) const override
{
return 0;
}
void process(BlockLattice3D& blockLattice) override;
void processSubDomain ( BlockLattice3D& blockLattice,
int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ) override;
private:
int reflectionPop[DESCRIPTOR::q];
int x0, x1, y0, y1, z0, z1;
T tuner;
};
template
class PartialSlipBoundaryProcessorGenerator3D : public PostProcessorGenerator3D {
public:
PartialSlipBoundaryProcessorGenerator3D(T tuner_, int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_);
PostProcessor3D* generate() const override;
PostProcessorGenerator3D* clone() const override;
private:
int discreteNormalX;
int discreteNormalY;
int discreteNormalZ;
T tuner;
};
/// PostProcessor for the wetting boundary condition in the free energy model. This is
/// required to set rho on the boundary (using the denisty of the neighbouring cell in
/// direction of inwards facing normal at the boundary), as the coupling between the
/// lattices requires the calculation of a density gradient.
template
class FreeEnergyWallProcessor3D : public LocalPostProcessor3D {
public:
FreeEnergyWallProcessor3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_,
int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_, T addend_);
int extent() const override
{
return 2;
}
int extent(int whichDirection) const override
{
return 2;
}
void process(BlockLattice3D& blockLattice) override;
void processSubDomain(BlockLattice3D& blockLattice,
int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ) override;
private:
int x0, x1, y0, y1, z0, z1;
int discreteNormalX, discreteNormalY, discreteNormalZ;
T addend;
};
/// Generator class for the FreeEnergyWall PostProcessor handling the wetting boundary condition.
template
class FreeEnergyWallProcessorGenerator3D : public PostProcessorGenerator3D {
public:
FreeEnergyWallProcessorGenerator3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_,
int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_, T addend_);
PostProcessor3D* generate() const override;
PostProcessorGenerator3D* clone() const override;
private:
int discreteNormalX;
int discreteNormalY;
int discreteNormalZ;
T addend;
};
/// PostProcessor for the chemical potential boundary condition in the free energy model.
/// The chemical potentials on the boundary are set equal to the chemical potential on the
/// fluid cell normal to the boundary. This is necessary because the coupling between the
/// lattices requires the calculation of the gradient of the chemical potential.
///
/// It would be preferable if this were implemented as a lattice coupling that ran
/// between the chemical potential and force lattice couplings. However there is no
/// access to the discrete normals in lattice couplings.
template
class FreeEnergyChemPotBoundaryProcessor3D : public LocalPostProcessor3D {
public:
FreeEnergyChemPotBoundaryProcessor3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_,
int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_, int latticeNumber_);
int extent() const override
{
return 2;
}
int extent(int whichDirection) const override
{
return 2;
}
void process(BlockLattice3D& blockLattice) override;
void processSubDomain(BlockLattice3D& blockLattice,
int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ) override;
private:
int x0, x1, y0, y1, z0, z1;
int discreteNormalX, discreteNormalY, discreteNormalZ;
int latticeNumber;
};
/// Generator class for the FreeEnergyChemPotBoundary PostProcessor.
template
class FreeEnergyChemPotBoundaryProcessorGenerator3D : public PostProcessorGenerator3D {
public:
FreeEnergyChemPotBoundaryProcessorGenerator3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_,
int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_, int latticeNumber_);
PostProcessor3D* generate() const override;
PostProcessorGenerator3D* clone() const override;
private:
int discreteNormalX;
int discreteNormalY;
int discreteNormalZ;
int latticeNumber;
};
/// PostProcessor for the density / velocity outflow boundaries in the free energy model.
/// The density / order parameters are prescribed to the outflow nodes such that they obey
/// the local-velocity convective boundary condition given in Lou, Gou, Shi (2013).
template
class FreeEnergyConvectiveProcessor3D : public LocalPostProcessor3D {
public:
FreeEnergyConvectiveProcessor3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_,
int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_);
int extent() const override
{
return 2;
}
int extent(int whichDirection) const override
{
return 2;
}
void process(BlockLattice3D& blockLattice) override;
void processSubDomain(BlockLattice3D& blockLattice,
int x0_, int x1_, int y0_, int y1_, int z0_, int z1_ ) override;
private:
int x0, x1, y0, y1, z0, z1;
int discreteNormalX, discreteNormalY, discreteNormalZ;
};
/// Generator class for the FreeEnergyConvective post processor.
template
class FreeEnergyConvectiveProcessorGenerator3D : public PostProcessorGenerator3D {
public:
FreeEnergyConvectiveProcessorGenerator3D(int x0_, int x1_, int y0_, int y1_, int z0_, int z1_,
int discreteNormalX_, int discreteNormalY_, int discreteNormalZ_);
PostProcessor3D* generate() const override;
PostProcessorGenerator3D* clone() const override;
private:
int discreteNormalX;
int discreteNormalY;
int discreteNormalZ;
};
}
#endif