/* This file is part of the OpenLB library * * Copyright (C) 2006, 2007 Jonas Latt * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** \file * Implementation of boundary cell dynamics -- header file. */ #ifndef MOMENTA_ON_BOUNDARIES_H #define MOMENTA_ON_BOUNDARIES_H #include "dynamics/dynamics.h" namespace olb { template class Cell; /// Dirichlet condition on velocity and/or pressure template class DirichletBoundaryMomenta : public Momenta { }; template class EquilibriumBM : public DirichletBoundaryMomenta { public: EquilibriumBM(); EquilibriumBM( T rho, const T u[DESCRIPTOR::d] ); T computeRho( Cell const& cell ) const override; void computeU( Cell const& cell, T u[DESCRIPTOR::d] ) const override; void computeJ( Cell const& cell, T j[DESCRIPTOR::d] ) const override; void computeStress( Cell const& cell, T rho, const T u[DESCRIPTOR::d], T pi[util::TensorVal::n] ) const override; void defineRho( Cell& cell, T rho) override; void defineU( Cell& cell, const T u[DESCRIPTOR::d]) override; void defineAllMomenta( Cell& cell, T rho, const T u[DESCRIPTOR::d], const T pi[util::TensorVal::n] ) override; private: T _rho; T _u[DESCRIPTOR::d]; ///< value of the velocity on the boundary }; /// Computation of velocity momenta on a velocity boundary template class VelocityBM : virtual public DirichletBoundaryMomenta { public: /// Default Constructor: initialization to zero VelocityBM(); /// Constructor with boundary initialization VelocityBM(const T u[DESCRIPTOR::d]); T computeRho(Cell const& cell) const override; void computeU ( Cell const& cell, T u[DESCRIPTOR::d] ) const override; void computeJ ( Cell const& cell, T j[DESCRIPTOR::d] ) const override; void computeU(T u[DESCRIPTOR::d]) const; void defineRho(Cell& cell, T rho) override ; void defineU(Cell& cell, const T u[DESCRIPTOR::d]) override ; void defineU(const T u[DESCRIPTOR::d]); void defineAllMomenta( Cell& cell, T rho, const T u[DESCRIPTOR::d], const T pi[util::TensorVal::n] ) override; private: T _u[DESCRIPTOR::d]; ///< value of the velocity on the boundary }; /// Computation of velocity momenta on a velocity boundary template class PressureBM : virtual public DirichletBoundaryMomenta { public: /// Default Constructor: initialization to u=0, rho=1 PressureBM(); /// Constructor with boundary initialization PressureBM(const T values_[DESCRIPTOR::d]); T computeRho(Cell const& cell) const override; T computeRho() const; void computeU( Cell const& cell, T u[DESCRIPTOR::d] ) const override; void computeJ( Cell const& cell, T j[DESCRIPTOR::d] ) const override; void defineRho(Cell& cell, T rho) override; void defineRho(T rho); void defineU(Cell& cell, const T u[DESCRIPTOR::d]) override; void defineAllMomenta( Cell& cell, T rho, const T u[DESCRIPTOR::d], const T pi[util::TensorVal::n] ) override; private: /// Velocity/Density on boundary. /** Contains velocity on the boundary, except for values[direction] that * contains a prescription for the density. */ T _values[DESCRIPTOR::d]; }; /// Here, the stress is computed from the particle distribution functions template class FreeStressBM : virtual public DirichletBoundaryMomenta { public: void computeStress( Cell const& cell, T rho, const T u[DESCRIPTOR::d], T pi[util::TensorVal::n] ) const override; }; /// Use special trick to compute u resp. rho, but compute pi from part. distr. functions template class HydroBM, int direction, int orientation> class BasicDirichletBM : public FreeStressBM, public HydroBM { }; /// Computation of the stress tensor for regularized boundary template class RegularizedBM : virtual public DirichletBoundaryMomenta { public: /// Stress tensor void computeStress( Cell const& cell, T rho, const T u[DESCRIPTOR::d], T pi[util::TensorVal::n] ) const override; }; /// Regularized velocity boundary node template class RegularizedVelocityBM : public RegularizedBM, public VelocityBM { public: RegularizedVelocityBM() { } RegularizedVelocityBM(const T u[DESCRIPTOR::d]) : VelocityBM(u) {} }; /// Regularized pressure boundary node template class RegularizedPressureBM : public RegularizedBM, public PressureBM { public: RegularizedPressureBM() { } RegularizedPressureBM(const T values[DESCRIPTOR::d]) : PressureBM(values) { } }; /// In this class, the velocity is fixed /** * As opposed to VelocityBM, the pressure is however not * computed from a special trick on the boundary, but the * same way it would be in the bulk. */ template class FixedVelocityBM : public Momenta { public: T computeRho(Cell const& cell) const override; void computeU( Cell const& cell, T u[DESCRIPTOR::d] ) const override; void computeJ( Cell const& cell, T j[DESCRIPTOR::d] ) const override; void computeStress( Cell const& cell, T rho, const T u[DESCRIPTOR::d], T pi[util::TensorVal::n] ) const override; void computeRhoU( Cell const& cell, T& rho, T u[DESCRIPTOR::d]) const override; void computeAllMomenta( Cell const& cell, T& rho, T u[DESCRIPTOR::d], T pi[util::TensorVal::n] ) const override; void defineRho(Cell& cell, T rho) override; void defineU(Cell& cell, const T u[DESCRIPTOR::d]) override; void defineRhoU( Cell& cell, T rho, const T u[DESCRIPTOR::d]) override; void defineAllMomenta( Cell& cell, T rho, const T u[DESCRIPTOR::d], const T pi[util::TensorVal::n] ) override; private: BulkMomenta _basicMomenta; T _fixU[DESCRIPTOR::d]; }; template T velocityBMRho( Cell const& cell, const T* u ); } // namespace olb #endif