/* This file is part of the OpenLB library
*
* Copyright (C) 2006, 2007 Jonas Latt
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/** \file
* Implementation of boundary cell dynamics -- header file.
*/
#ifndef MOMENTA_ON_BOUNDARIES_H
#define MOMENTA_ON_BOUNDARIES_H
#include "dynamics/dynamics.h"
namespace olb {
template class Cell;
/// Dirichlet condition on velocity and/or pressure
template
class DirichletBoundaryMomenta : public Momenta {
};
template
class EquilibriumBM : public DirichletBoundaryMomenta {
public:
EquilibriumBM();
EquilibriumBM( T rho, const T u[DESCRIPTOR::d] );
T computeRho( Cell const& cell ) const override;
void computeU( Cell const& cell, T u[DESCRIPTOR::d] ) const override;
void computeJ( Cell const& cell, T j[DESCRIPTOR::d] ) const override;
void computeStress( Cell const& cell, T rho, const T u[DESCRIPTOR::d],
T pi[util::TensorVal::n] ) const override;
void defineRho( Cell& cell, T rho) override;
void defineU( Cell& cell, const T u[DESCRIPTOR::d]) override;
void defineAllMomenta( Cell& cell, T rho, const T u[DESCRIPTOR::d],
const T pi[util::TensorVal::n] ) override;
private:
T _rho;
T _u[DESCRIPTOR::d]; ///< value of the velocity on the boundary
};
/// Computation of velocity momenta on a velocity boundary
template
class VelocityBM : virtual public DirichletBoundaryMomenta {
public:
/// Default Constructor: initialization to zero
VelocityBM();
/// Constructor with boundary initialization
VelocityBM(const T u[DESCRIPTOR::d]);
T computeRho(Cell const& cell) const override;
void computeU ( Cell const& cell, T u[DESCRIPTOR::d] ) const override;
void computeJ ( Cell const& cell, T j[DESCRIPTOR::d] ) const override;
void computeU(T u[DESCRIPTOR::d]) const;
void defineRho(Cell& cell, T rho) override ;
void defineU(Cell& cell, const T u[DESCRIPTOR::d]) override ;
void defineU(const T u[DESCRIPTOR::d]);
void defineAllMomenta( Cell& cell, T rho, const T u[DESCRIPTOR::d],
const T pi[util::TensorVal::n] ) override;
private:
T _u[DESCRIPTOR::d]; ///< value of the velocity on the boundary
};
/// Computation of velocity momenta on a velocity boundary
template
class PressureBM : virtual public DirichletBoundaryMomenta {
public:
/// Default Constructor: initialization to u=0, rho=1
PressureBM();
/// Constructor with boundary initialization
PressureBM(const T values_[DESCRIPTOR::d]);
T computeRho(Cell const& cell) const override;
T computeRho() const;
void computeU( Cell const& cell, T u[DESCRIPTOR::d] ) const override;
void computeJ( Cell const& cell, T j[DESCRIPTOR::d] ) const override;
void defineRho(Cell& cell, T rho) override;
void defineRho(T rho);
void defineU(Cell& cell, const T u[DESCRIPTOR::d]) override;
void defineAllMomenta( Cell& cell, T rho, const T u[DESCRIPTOR::d],
const T pi[util::TensorVal::n] ) override;
private:
/// Velocity/Density on boundary.
/** Contains velocity on the boundary, except for values[direction] that
* contains a prescription for the density.
*/
T _values[DESCRIPTOR::d];
};
/// Here, the stress is computed from the particle distribution functions
template
class FreeStressBM : virtual public DirichletBoundaryMomenta {
public:
void computeStress( Cell const& cell, T rho, const T u[DESCRIPTOR::d],
T pi[util::TensorVal::n] ) const override;
};
/// Use special trick to compute u resp. rho, but compute pi from part. distr. functions
template
class HydroBM,
int direction, int orientation>
class BasicDirichletBM : public FreeStressBM, public HydroBM {
};
/// Computation of the stress tensor for regularized boundary
template
class RegularizedBM : virtual public DirichletBoundaryMomenta {
public:
/// Stress tensor
void computeStress( Cell const& cell, T rho, const T u[DESCRIPTOR::d],
T pi[util::TensorVal::n] ) const override;
};
/// Regularized velocity boundary node
template
class RegularizedVelocityBM : public RegularizedBM, public VelocityBM {
public:
RegularizedVelocityBM() { }
RegularizedVelocityBM(const T u[DESCRIPTOR::d]) : VelocityBM(u) {}
};
/// Regularized pressure boundary node
template
class RegularizedPressureBM : public RegularizedBM, public PressureBM {
public:
RegularizedPressureBM() { }
RegularizedPressureBM(const T values[DESCRIPTOR::d]) : PressureBM(values) { }
};
/// In this class, the velocity is fixed
/**
* As opposed to VelocityBM, the pressure is however not
* computed from a special trick on the boundary, but the
* same way it would be in the bulk.
*/
template
class FixedVelocityBM : public Momenta {
public:
T computeRho(Cell const& cell) const override;
void computeU( Cell const& cell, T u[DESCRIPTOR::d] ) const override;
void computeJ( Cell const& cell, T j[DESCRIPTOR::d] ) const override;
void computeStress( Cell const& cell, T rho, const T u[DESCRIPTOR::d],
T pi[util::TensorVal::n] ) const override;
void computeRhoU( Cell const& cell, T& rho, T u[DESCRIPTOR::d]) const override;
void computeAllMomenta( Cell const& cell, T& rho, T u[DESCRIPTOR::d],
T pi[util::TensorVal::n] ) const override;
void defineRho(Cell& cell, T rho) override;
void defineU(Cell& cell, const T u[DESCRIPTOR::d]) override;
void defineRhoU( Cell& cell, T rho, const T u[DESCRIPTOR::d]) override;
void defineAllMomenta( Cell& cell, T rho, const T u[DESCRIPTOR::d],
const T pi[util::TensorVal::n] ) override;
private:
BulkMomenta _basicMomenta;
T _fixU[DESCRIPTOR::d];
};
template
T velocityBMRho( Cell const& cell, const T* u );
} // namespace olb
#endif