/* This file is part of the OpenLB library
*
* Copyright (C) 2007 Mathias J. Krause
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/** \file
* A helper for initialising 2D boundaries -- header file.
*/
#ifndef SUPER_BOUNDARY_CONDITION_2D_H
#define SUPER_BOUNDARY_CONDITION_2D_H
#include
#include "boundaryCondition2D.h"
#include "advectionDiffusionBoundaryCondition2D.h" // -> for AdvectionDiffusion
#include "geometry/blockGeometryStatistics2D.h"
#include "core/superLattice2D.h"
#include "io/ostreamManager.h"
#include "geometry/superGeometry2D.h"
#include "utilities/functorPtr.h"
/// All OpenLB code is contained in this namespace.
namespace olb {
/// A helper for initialising 2D boundaries for super lattices.
/** Here we have methods that initializes for a given global
* point or global range the local postprocessors and the
* communicator (_commBC in SuperLattice) for boundary conditions.
*
* This class is not intended to be derived from.
*/
template
class sOnLatticeBoundaryCondition2D {
public:
/// Constructor
sOnLatticeBoundaryCondition2D(SuperLattice2D& sLattice);
/// Copy construction
sOnLatticeBoundaryCondition2D(sOnLatticeBoundaryCondition2D const& rhs);
/// Copy assignment
sOnLatticeBoundaryCondition2D operator=(sOnLatticeBoundaryCondition2D rhs);
/// Destructor
~sOnLatticeBoundaryCondition2D();
void addVelocityBoundary(FunctorPtr>&& indicator, T omega);
void addVelocityBoundary(SuperGeometry2D& superGeometry, int material, T omega);
void addSlipBoundary(FunctorPtr>&& indicator);
void addSlipBoundary(SuperGeometry2D& superGeometry, int material);
void addPartialSlipBoundary(T tuner, FunctorPtr>&& indicator);
void addPartialSlipBoundary(T tuner, SuperGeometry2D& superGeometry, int material);
void addTemperatureBoundary(FunctorPtr>&& indicator, T omega);
void addTemperatureBoundary(SuperGeometry2D& superGeometry, int material, T omega);
void addRegularizedTemperatureBoundary(FunctorPtr>&& indicator, T omega);
void addRegularizedTemperatureBoundary(SuperGeometry2D& superGeometry, int material, T omega);
void addRegularizedHeatFluxBoundary(FunctorPtr>&& indicator, T omega, T *heatFlux=nullptr);
void addRegularizedHeatFluxBoundary(SuperGeometry2D& superGeometry, int material, T omega, T *heatFlux=nullptr);
void addPressureBoundary(FunctorPtr>&& indicator, T omega);
void addPressureBoundary(SuperGeometry2D& superGeometry, int material, T omega);
void addConvectionBoundary(FunctorPtr>&& indicator, T omega, T* uAv=NULL);
void addConvectionBoundary(SuperGeometry2D& superGeometry, int material, T omega, T* uAv=NULL);
/// Implementation of a wetting boundary condition for the binary free energy model, consisting of a BounceBack
/// dynamics and an FreeEnergyWall PostProcessor.
/// \param[in] alpha_ - Parameter related to the interface width. [lattice units]
/// \param[in] kappa1_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa2_ - Parameter related to surface tension. [lattice units]
/// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly
void addFreeEnergyWallBoundary(FunctorPtr>&& indicator, T alpha, T kappa1, T kappa2, T h1, T h2, int latticeNumber);
/// Implementation of a wetting boundary condition for the binary free energy model, consisting of a BounceBack
/// dynamics and an FreeEnergyWall PostProcessor.
/// \param[in] alpha_ - Parameter related to the interface width. [lattice units]
/// \param[in] kappa1_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa2_ - Parameter related to surface tension. [lattice units]
/// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly
void addFreeEnergyWallBoundary(SuperGeometry2D& superGeometry, int material, T alpha, T kappa1, T kappa2, T h1, T h2, int latticeNumber);
/// Implementation of a wetting boundary condition for the ternary free energy model, consisting of a BounceBack
/// dynamics and an FreeEnergyWall PostProcessor.
/// \param[in] alpha_ - Parameter related to the interface width. [lattice units]
/// \param[in] kappa1_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa2_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa3_ - Parameter related to surface tension. [lattice units]
/// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h3_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly
void addFreeEnergyWallBoundary(FunctorPtr>&& indicator, T alpha, T kappa1, T kappa2, T kappa3, T h1, T h2, T h3, int latticeNumber);
/// Implementation of a wetting boundary condition for the ternary free energy model, consisting of a BounceBack
/// dynamics and an FreeEnergyWall PostProcessor.
/// \param[in] alpha_ - Parameter related to the interface width. [lattice units]
/// \param[in] kappa1_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa2_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa3_ - Parameter related to surface tension. [lattice units]
/// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h3_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly
void addFreeEnergyWallBoundary(SuperGeometry2D& superGeometry, int material, T alpha, T kappa1, T kappa2, T kappa3, T h1, T h2, T h3, int latticeNumber);
/// Implementation of a inlet boundary condition for the partner lattices of the binary or ternary free energy model.
void addFreeEnergyInletBoundary(SuperGeometry2D& superGeometry, int material, T omega, std::string type, int latticeNumber);
/// Implementation of a inlet boundary condition for the partner lattices of the binary or ternary free energy model.
void addFreeEnergyInletBoundary(FunctorPtr>&& indicator, T omega, std::string type, int latticeNumber);
/// Implementation of a outlet boundary condition for the partner lattices of the binary or ternary free energy model.
void addFreeEnergyOutletBoundary(SuperGeometry2D& superGeometry, int material, T omega, std::string type, int latticeNumber);
/// Implementation of a outlet boundary condition for the partner lattices of the binary or ternary free energy model.
void addFreeEnergyOutletBoundary(FunctorPtr>&& indicator, T omega, std::string type, int latticeNumber);
/// Adds needed Cells to the Communicator _commBC in SuperLattice
void addPoints2CommBC(FunctorPtr>&& indicator);
void addPoints2CommBC(SuperGeometry2D& superGeometry, int material);
SuperLattice2D& getSuperLattice()
{
return _sLattice;
};
std::vector* >& getBlockBCs()
{
return _blockBCs;
};
std::vector*>& getADblockBCs()
{
return _ADblockBCs;
};
int getOverlap()
{
return _overlap;
};
void setOverlap(int overlap)
{
_overlap = overlap;
};
void outputOn();
void outputOff();
private:
mutable OstreamManager clout;
SuperLattice2D& _sLattice;
std::vector* > _blockBCs;
std::vector*> _ADblockBCs; // -> for AdvectionDiffusion
int _overlap;
bool _output;
};
template >
void createLocalBoundaryCondition2D(sOnLatticeBoundaryCondition2D& sBC);
template >
void createInterpBoundaryCondition2D(sOnLatticeBoundaryCondition2D& sBC);
template >
void createExtFdBoundaryCondition2D(sOnLatticeBoundaryCondition2D& sBC);
} // namespace olb
#endif