/* This file is part of the OpenLB library * * Copyright (C) 2007 Mathias J. Krause * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** \file * A helper for initialising 2D boundaries -- generic implementation. */ #ifndef SUPER_BOUNDARY_CONDITION_2D_HH #define SUPER_BOUNDARY_CONDITION_2D_HH #include #include "boundaryCondition2D.h" #include "extendedFiniteDifferenceBoundary2D.h" #include "superBoundaryCondition2D.h" #include "core/superLattice2D.h" #include "functors/lattice/indicator/superIndicatorF2D.h" namespace olb { ///////// class superBoundaryCondition2D /////////////////////////////// template sOnLatticeBoundaryCondition2D::sOnLatticeBoundaryCondition2D( SuperLattice2D& sLattice) : clout(std::cout,"sOnLatticeBoundaryCondition2D"), _sLattice(sLattice), _output(false) { } template sOnLatticeBoundaryCondition2D::sOnLatticeBoundaryCondition2D( sOnLatticeBoundaryCondition2D const& rhs) : clout(std::cout,"sOnLatticeBoundaryCondition2D"), _sLattice(rhs._sLattice), _output(false) { _blockBCs = rhs._blockBCs; _overlap = rhs._overlap; } template sOnLatticeBoundaryCondition2D sOnLatticeBoundaryCondition2D::operator=(sOnLatticeBoundaryCondition2D rhs) { sOnLatticeBoundaryCondition2D tmp(rhs); return tmp; } template sOnLatticeBoundaryCondition2D::~sOnLatticeBoundaryCondition2D() { //for (unsigned iC = 0; iC < _blockBCs.size(); iC++) { // delete _blockBCs[iC]; //} } template void sOnLatticeBoundaryCondition2D::addVelocityBoundary( FunctorPtr>&& indicator, T omega) { bool includeOuterCells = false; if (indicator->getSuperGeometry().getOverlap() == 1) { includeOuterCells = true; clout << "WARNING: overlap == 1, boundary conditions set on overlap despite unknown neighbor materials" << std::endl; } for (int iCloc = 0; iCloc < _sLattice.getLoadBalancer().size(); ++iCloc) { _blockBCs[iCloc]->addVelocityBoundary( indicator->getExtendedBlockIndicatorF(iCloc), omega, includeOuterCells); } addPoints2CommBC(std::forward(indicator)); } template void sOnLatticeBoundaryCondition2D::addVelocityBoundary( SuperGeometry2D& superGeometry, int material, T omega) { addVelocityBoundary(superGeometry.getMaterialIndicator(material), omega); } template void sOnLatticeBoundaryCondition2D::addSlipBoundary( FunctorPtr>&& indicator) { bool includeOuterCells = false; if (indicator->getSuperGeometry().getOverlap() == 1) { includeOuterCells = true; clout << "WARNING: overlap == 1, boundary conditions set on overlap despite unknown neighbor materials" << std::endl; } for (int iCloc = 0; iCloc < _sLattice.getLoadBalancer().size(); ++iCloc) { _blockBCs[iCloc]->addSlipBoundary(indicator->getExtendedBlockIndicatorF(iCloc), includeOuterCells); } addPoints2CommBC(std::forward(indicator)); } template void sOnLatticeBoundaryCondition2D::addSlipBoundary( SuperGeometry2D& superGeometry, int material) { addSlipBoundary(superGeometry.getMaterialIndicator(material)); } template void sOnLatticeBoundaryCondition2D::addPartialSlipBoundary( T tuner, FunctorPtr>&& indicator) { bool includeOuterCells = false; if (indicator->getSuperGeometry().getOverlap() == 1) { includeOuterCells = true; clout << "WARNING: overlap == 1, boundary conditions set on overlap despite unknown neighbor materials" << std::endl; } for (int iCloc = 0; iCloc < _sLattice.getLoadBalancer().size(); ++iCloc) { _blockBCs[iCloc]->addPartialSlipBoundary( tuner, indicator->getExtendedBlockIndicatorF(iCloc), includeOuterCells); } addPoints2CommBC(std::forward(indicator)); } template void sOnLatticeBoundaryCondition2D::addPartialSlipBoundary( T tuner, SuperGeometry2D& superGeometry, int material) { addPartialSlipBoundary(tuner, superGeometry.getMaterialIndicator(material)); } template void sOnLatticeBoundaryCondition2D::addTemperatureBoundary( FunctorPtr>&& indicator, T omega) { bool includeOuterCells = false; if (indicator->getSuperGeometry().getOverlap() == 1) { includeOuterCells = true; clout << "WARNING: overlap == 1, boundary conditions set on overlap despite unknown neighbor materials" << std::endl; } for (int iCloc = 0; iCloc < _sLattice.getLoadBalancer().size(); ++iCloc) { _ADblockBCs[iCloc]->addTemperatureBoundary( indicator->getExtendedBlockIndicatorF(iCloc), omega, includeOuterCells); } addPoints2CommBC(std::forward(indicator)); } template void sOnLatticeBoundaryCondition2D::addTemperatureBoundary( SuperGeometry2D& superGeometry, int material, T omega) { addTemperatureBoundary(superGeometry.getMaterialIndicator(material), omega); } template void sOnLatticeBoundaryCondition2D::addRegularizedTemperatureBoundary( FunctorPtr>&& indicator, T omega) { for (int iCloc = 0; iCloc < _sLattice.getLoadBalancer().size(); ++iCloc) { _ADblockBCs[iCloc]->addRegularizedTemperatureBoundary( indicator->getExtendedBlockIndicatorF(iCloc), omega); } addPoints2CommBC(std::forward(indicator)); } template void sOnLatticeBoundaryCondition2D::addRegularizedTemperatureBoundary( SuperGeometry2D& superGeometry, int material, T omega) { addRegularizedTemperatureBoundary(superGeometry.getMaterialIndicator(material), omega); } template void sOnLatticeBoundaryCondition2D::addRegularizedHeatFluxBoundary( FunctorPtr>&& indicator, T omega, T *heatFlux) { for (int iCloc = 0; iCloc < _sLattice.getLoadBalancer().size(); ++iCloc) { _ADblockBCs[iCloc]->addRegularizedHeatFluxBoundary( indicator->getExtendedBlockIndicatorF(iCloc), omega, heatFlux); } addPoints2CommBC(std::forward(indicator)); } template void sOnLatticeBoundaryCondition2D::addRegularizedHeatFluxBoundary( SuperGeometry2D& superGeometry, int material, T omega, T *heatFlux) { addRegularizedHeatFluxBoundary(superGeometry.getMaterialIndicator(material), omega, heatFlux); } template void sOnLatticeBoundaryCondition2D::addPressureBoundary( FunctorPtr>&& indicator, T omega) { bool includeOuterCells = false; if (indicator->getSuperGeometry().getOverlap() == 1) { includeOuterCells = true; clout << "WARNING: overlap == 1, boundary conditions set on overlap despite unknown neighbor materials" << std::endl; } for (int iCloc = 0; iCloc < _sLattice.getLoadBalancer().size(); ++iCloc) { _blockBCs[iCloc]->addPressureBoundary( indicator->getExtendedBlockIndicatorF(iCloc), omega, includeOuterCells); } addPoints2CommBC(std::forward(indicator)); } template void sOnLatticeBoundaryCondition2D::addPressureBoundary( SuperGeometry2D& superGeometry, int material, T omega) { addPressureBoundary(superGeometry.getMaterialIndicator(material), omega); } template void sOnLatticeBoundaryCondition2D::addConvectionBoundary( FunctorPtr>&& indicator, T omega, T* uAv) { bool includeOuterCells = false; if (indicator->getSuperGeometry().getOverlap() == 1) { includeOuterCells = true; clout << "WARNING: overlap == 1, boundary conditions set on overlap despite unknown neighbor materials" << std::endl; } for (int iCloc = 0; iCloc < _sLattice.getLoadBalancer().size(); ++iCloc) { _blockBCs[iCloc]->addConvectionBoundary( indicator->getExtendedBlockIndicatorF(iCloc), omega, uAv, includeOuterCells); } addPoints2CommBC(std::forward(indicator)); } template void sOnLatticeBoundaryCondition2D::addConvectionBoundary( SuperGeometry2D& superGeometry, int material, T omega, T* uAv) { addConvectionBoundary(superGeometry.getMaterialIndicator(material), omega, uAv); } template void sOnLatticeBoundaryCondition2D::addFreeEnergyWallBoundary( FunctorPtr>&& indicator, T alpha, T kappa1, T kappa2, T h1, T h2, int latticeNumber) { bool includeOuterCells = false; if (indicator->getSuperGeometry().getOverlap() == 1) { includeOuterCells = true; clout << "WARNING: overlap == 1, boundary conditions set on overlap despite unknown neighbor materials" << std::endl; } T addend = 0; if(latticeNumber==1) addend = 1./(alpha*alpha) * ( (h1/kappa1) + (h2/kappa2) ); else if(latticeNumber==2) addend = 1./(alpha*alpha) * ( (h1/kappa1) + (-h2/kappa2) ); else if(latticeNumber==3) addend = 1./(alpha*alpha) * ( (h1/kappa1) + (h2/kappa2) ); for (int iCloc = 0; iCloc < _sLattice.getLoadBalancer().size(); ++iCloc) { _blockBCs[iCloc]->addFreeEnergyWallBoundary( indicator->getExtendedBlockIndicatorF(iCloc), addend, latticeNumber, includeOuterCells); } addPoints2CommBC(std::forward(indicator)); } template void sOnLatticeBoundaryCondition2D::addFreeEnergyWallBoundary( SuperGeometry2D& superGeometry, int material, T alpha, T kappa1, T kappa2, T h1, T h2, int latticeNumber) { addFreeEnergyWallBoundary(superGeometry.getMaterialIndicator(material), alpha, kappa1, kappa2, h1, h2, latticeNumber); } template void sOnLatticeBoundaryCondition2D::addFreeEnergyWallBoundary( FunctorPtr>&& indicator, T alpha, T kappa1, T kappa2, T kappa3, T h1, T h2, T h3, int latticeNumber) { bool includeOuterCells = false; if (indicator->getSuperGeometry().getOverlap() == 1) { includeOuterCells = true; clout << "WARNING: overlap == 1, boundary conditions set on overlap despite unknown neighbor materials" << std::endl; } T addend = 0; if(latticeNumber==1) addend = 1./(alpha*alpha) * ( (h1/kappa1) + (h2/kappa2) + (h3/kappa3) ); else if(latticeNumber==2) addend = 1./(alpha*alpha) * ( (h1/kappa1) + (-h2/kappa2) ); else if(latticeNumber==3) addend = 1./(alpha*alpha) * ( (h3/kappa3) ); for (int iCloc = 0; iCloc < _sLattice.getLoadBalancer().size(); ++iCloc) { _blockBCs[iCloc]->addFreeEnergyWallBoundary( indicator->getExtendedBlockIndicatorF(iCloc), addend, latticeNumber, includeOuterCells); } addPoints2CommBC(std::forward(indicator)); } template void sOnLatticeBoundaryCondition2D::addFreeEnergyWallBoundary( SuperGeometry2D& superGeometry, int material, T alpha, T kappa1, T kappa2, T kappa3, T h1, T h2, T h3, int latticeNumber) { addFreeEnergyWallBoundary(superGeometry.getMaterialIndicator(material), alpha, kappa1, kappa2, kappa3, h1, h2, h3, latticeNumber); } template void sOnLatticeBoundaryCondition2D::addFreeEnergyInletBoundary( FunctorPtr>&& indicator, T omega, std::string type, int latticeNumber) { bool includeOuterCells = false; if (indicator->getSuperGeometry().getOverlap() == 1) { includeOuterCells = true; clout << "WARNING: overlap == 1, boundary conditions set on overlap despite unknown neighbor materials" << std::endl; } for (int iCloc = 0; iCloc < _sLattice.getLoadBalancer().size(); ++iCloc) { _blockBCs[iCloc]->addFreeEnergyInletBoundary( indicator->getExtendedBlockIndicatorF(iCloc), omega, type, latticeNumber, includeOuterCells); } addPoints2CommBC(std::forward(indicator)); } template void sOnLatticeBoundaryCondition2D::addFreeEnergyInletBoundary( SuperGeometry2D& superGeometry, int material, T omega, std::string type, int latticeNumber) { addFreeEnergyInletBoundary(superGeometry.getMaterialIndicator(material), omega, type, latticeNumber); } template void sOnLatticeBoundaryCondition2D::addFreeEnergyOutletBoundary( FunctorPtr>&& indicator, T omega, std::string type, int latticeNumber) { bool includeOuterCells = false; if (indicator->getSuperGeometry().getOverlap() == 1) { includeOuterCells = true; clout << "WARNING: overlap == 1, boundary conditions set on overlap despite unknown neighbor materials" << std::endl; } for (int iCloc = 0; iCloc < _sLattice.getLoadBalancer().size(); ++iCloc) { _blockBCs[iCloc]->addFreeEnergyOutletBoundary( indicator->getExtendedBlockIndicatorF(iCloc), omega, type, latticeNumber, includeOuterCells); } addPoints2CommBC(std::forward(indicator)); } template void sOnLatticeBoundaryCondition2D::addFreeEnergyOutletBoundary( SuperGeometry2D& superGeometry, int material, T omega, std::string type, int latticeNumber) { addFreeEnergyOutletBoundary(superGeometry.getMaterialIndicator(material), omega, type, latticeNumber); } template void sOnLatticeBoundaryCondition2D::addPoints2CommBC( FunctorPtr>&& indicator) { if (_overlap == 0) { return; } SuperGeometry2D& superGeometry = indicator->getSuperGeometry(); for (int iCloc = 0; iCloc < _sLattice.getLoadBalancer().size(); ++iCloc) { const int nX = superGeometry.getBlockGeometry(iCloc).getNx(); const int nY = superGeometry.getBlockGeometry(iCloc).getNy(); for (int iX = -_overlap; iX < nX+_overlap; ++iX) { for (int iY = -_overlap; iY < nY+_overlap; ++iY) { if (iX < 0 || iX > nX - 1 || iY < 0 || iY > nY - 1 ) { // if within overlap if (superGeometry.getBlockGeometry(iCloc).getMaterial(iX,iY) != 0) { bool found = false; for (int iXo = -_overlap; iXo <= _overlap && !found; ++iXo) { for (int iYo = -_overlap; iYo <= _overlap && !found; ++iYo) { const int nextX = iXo + iX; const int nextY = iYo + iY; if (indicator->getBlockIndicatorF(iCloc)(nextX, nextY)) { _sLattice.get_commBC().add_cell(iCloc, iX, iY); found = true; } } } } } } } } } template void sOnLatticeBoundaryCondition2D::addPoints2CommBC( SuperGeometry2D& superGeometry, int material) { addPoints2CommBC(superGeometry.getMaterialIndicator(material)); } ////////////////// Factory functions ////////////////////////////////// template void createLocalBoundaryCondition2D( sOnLatticeBoundaryCondition2D& sBC) { int nC = sBC.getSuperLattice().getLoadBalancer().size(); sBC.setOverlap(0); for (int iC = 0; iC < nC; iC++) { OnLatticeBoundaryCondition2D* blockBC = createLocalBoundaryCondition2D( sBC.getSuperLattice().getExtendedBlockLattice(iC)); sBC.getBlockBCs().push_back(blockBC); } } template void createInterpBoundaryCondition2D( sOnLatticeBoundaryCondition2D& sBC) { int nC = sBC.getSuperLattice().getLoadBalancer().size(); sBC.setOverlap(1); for (int iC = 0; iC < nC; iC++) { OnLatticeBoundaryCondition2D* blockBC = createInterpBoundaryCondition2D( sBC.getSuperLattice().getExtendedBlockLattice(iC)); sBC.getBlockBCs().push_back(blockBC); } } template void createExtFdBoundaryCondition2D( sOnLatticeBoundaryCondition2D& sBC) { int nC = sBC.getSuperLattice().getLoadBalancer().size(); sBC.setOverlap(1); for (int iC = 0; iC < nC; iC++) { OnLatticeBoundaryCondition2D* blockBC = createExtendedFdBoundaryCondition2D( sBC.getSuperLattice().getExtendedBlockLattice(iC)); sBC.getBlockBCs().push_back(blockBC); } } //////////////// Output functions ////////////////////////////////// template void sOnLatticeBoundaryCondition2D::outputOn() { _output = true; int nC = _sLattice.getLoadBalancer().size(); for (int iCloc = 0; iCloc < nC; iCloc++) { _blockBCs[iCloc]->outputOn(); } } template void sOnLatticeBoundaryCondition2D::outputOff() { _output = false; int nC = _sLattice.getLoadBalancer().size(); for (int iCloc = 0; iCloc < nC; iCloc++) { _blockBCs[iCloc]->outputOff(); } } } // namespace olb #endif