/* This file is part of the OpenLB library * * Copyright (C) 2007 Mathias J. Krause * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** \file * A helper for initialising 3D boundaries -- header file. */ #ifndef SUPER_BOUNDARY_CONDITION_3D_H #define SUPER_BOUNDARY_CONDITION_3D_H #include #include "io/ostreamManager.h" #include "utilities/functorPtr.h" #include "extendedFiniteDifferenceBoundary3D.h" /// All OpenLB code is contained in this namespace. namespace olb { template class OnLatticeAdvectionDiffusionBoundaryCondition3D; template class OnLatticeBoundaryCondition3D; template class SuperLattice3D; template class SuperGeometry3D; template class SuperIndicatorF3D; /// A helper for initialising 3D boundaries for super lattices. /** Here we have methods that initializes the local postprocessors and the * communicator (_commBC in SuperLattice) for boundary conditions * for a given global point or global range. * * This class is not intended to be derived from. */ template class sOnLatticeBoundaryCondition3D { public: sOnLatticeBoundaryCondition3D(SuperLattice3D& sLattice); sOnLatticeBoundaryCondition3D(sOnLatticeBoundaryCondition3D const& rhs); sOnLatticeBoundaryCondition3D operator=(sOnLatticeBoundaryCondition3D rhs); ~sOnLatticeBoundaryCondition3D(); void addVelocityBoundary(FunctorPtr>&& indicator, T omega); void addVelocityBoundary(SuperGeometry3D& superGeometry, int material, T omega); void addSlipBoundary(FunctorPtr>&& indicator); void addSlipBoundary(SuperGeometry3D& superGeometry, int material); void addPartialSlipBoundary(T tuner, FunctorPtr>&& indicator); void addPartialSlipBoundary(T tuner, SuperGeometry3D& superGeometry, int material); void addPressureBoundary(FunctorPtr>&& indicator, T omega); void addPressureBoundary(SuperGeometry3D& superGeometry, int material, T omega); void addConvectionBoundary(FunctorPtr>&& indicator, T omega, T* uAv=NULL); void addConvectionBoundary(SuperGeometry3D& superGeometry, int material, T omega, T* uAv=NULL); void addConvectionBoundary(FunctorPtr>&& indicator); void addConvectionBoundary(SuperGeometry3D& superGeometry, int material); void addWallFunctionBoundary(FunctorPtr>&& indicator, UnitConverter const& converter, wallFunctionParam const& wallFunctionParam, IndicatorF3D* geoIndicator=NULL); void addWallFunctionBoundary(SuperGeometry3D& superGeometry, int material, UnitConverter const& converter, wallFunctionParam const& wallFunctionParam, IndicatorF3D* geoIndicator=NULL); void addTemperatureBoundary(FunctorPtr>&& indicator, T omega); void addTemperatureBoundary(SuperGeometry3D& superGeometry, int material, T omega); void addExtFieldBoundary(FunctorPtr>&& indicator, int offset); void addExtFieldBoundary(SuperGeometry3D& superGeometry, int material, int offset); void addZeroDistributionBoundary(FunctorPtr>&& indicator); void addZeroDistributionBoundary(SuperGeometry3D& superGeometry, int material); /// Implementation of a wetting boundary condition for the binary free energy model, consisting of a BounceBack /// dynamics and an FreeEnergyWall PostProcessor. /// \param[in] alpha_ - Parameter related to the interface width. [lattice units] /// \param[in] kappa1_ - Parameter related to surface tension. [lattice units] /// \param[in] kappa2_ - Parameter related to surface tension. [lattice units] /// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units] /// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units] /// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly void addFreeEnergyWallBoundary(FunctorPtr>&& indicator, T alpha, T kappa1, T kappa2, T h1, T h2, int latticeNumber); /// Implementation of a wetting boundary condition for the binary free energy model, consisting of a BounceBack /// dynamics and an FreeEnergyWall PostProcessor. /// \param[in] alpha_ - Parameter related to the interface width. [lattice units] /// \param[in] kappa1_ - Parameter related to surface tension. [lattice units] /// \param[in] kappa2_ - Parameter related to surface tension. [lattice units] /// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units] /// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units] /// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly void addFreeEnergyWallBoundary(SuperGeometry3D& superGeometry, int material, T alpha, T kappa1, T kappa2, T h1, T h2, int latticeNumber); /// Implementation of a wetting boundary condition for the ternary free energy model, consisting of a BounceBack /// dynamics and an FreeEnergyWall PostProcessor. /// \param[in] alpha_ - Parameter related to the interface width. [lattice units] /// \param[in] kappa1_ - Parameter related to surface tension. [lattice units] /// \param[in] kappa2_ - Parameter related to surface tension. [lattice units] /// \param[in] kappa3_ - Parameter related to surface tension. [lattice units] /// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units] /// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units] /// \param[in] h3_ - Parameter related to resulting contact angle of the boundary. [lattice units] /// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly void addFreeEnergyWallBoundary(FunctorPtr>&& indicator, T alpha, T kappa1, T kappa2, T kappa3, T h1, T h2, T h3, int latticeNumber); /// Implementation of a wetting boundary condition for the ternary free energy model, consisting of a BounceBack /// dynamics and an FreeEnergyWall PostProcessor. /// \param[in] alpha_ - Parameter related to the interface width. [lattice units] /// \param[in] kappa1_ - Parameter related to surface tension. [lattice units] /// \param[in] kappa2_ - Parameter related to surface tension. [lattice units] /// \param[in] kappa3_ - Parameter related to surface tension. [lattice units] /// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units] /// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units] /// \param[in] h3_ - Parameter related to resulting contact angle of the boundary. [lattice units] /// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly void addFreeEnergyWallBoundary(SuperGeometry3D& superGeometry, int material, T alpha, T kappa1, T kappa2, T kappa3, T h1, T h2, T h3, int latticeNumber); /// Implementation of a inlet boundary condition for the partner lattices of the binary or the ternary free energy model. void addFreeEnergyInletBoundary(FunctorPtr>&& indicator, T omega, std::string type, int latticeNumber); /// Implementation of a inlet boundary condition for the partner lattices of the binary or the ternary free energy model. void addFreeEnergyInletBoundary(SuperGeometry3D& superGeometry, int material, T omega, std::string type, int latticeNumber); /// Implementation of a outlet boundary condition for the partner lattices of the binary or the ternary free energy model. void addFreeEnergyOutletBoundary(FunctorPtr>&& indicator, T omega, std::string type, int latticeNumber); /// Implementation of a outlet boundary condition for the partner lattices of the binary or the ternary free energy model. void addFreeEnergyOutletBoundary(SuperGeometry3D& superGeometry, int material, T omega, std::string type, int latticeNumber); /// Adds needed Cells to the Communicator _commBC in SuperLattice void addPoints2CommBC(FunctorPtr>&& indicator); /// Adds needed Cells to the Communicator _commBC in SuperLattice void addPoints2CommBC(SuperGeometry3D& superGeometry, int material); SuperLattice3D& getSuperLattice(); std::vector*>& getBlockBCs(); std::vector*>& getADblockBCs(); int getOverlap(); void setOverlap(int overlap); void outputOn(); void outputOff(); private: mutable OstreamManager clout; SuperLattice3D& _sLattice; std::vector*> _blockBCs; std::vector*> _ADblockBCs; int _overlap; bool _output; }; ////////////////// Factory functions ////////////////////////////////// template void createLocalBoundaryCondition3D(sOnLatticeBoundaryCondition3D& sBC); template > void createInterpBoundaryCondition3D(sOnLatticeBoundaryCondition3D& sBC); template > void createExtFdBoundaryCondition3D(sOnLatticeBoundaryCondition3D& sBC); } // namespace olb #endif