/* This file is part of the OpenLB library
*
* Copyright (C) 2007 Mathias J. Krause
* E-mail contact: info@openlb.net
* The most recent release of OpenLB can be downloaded at
*
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
/** \file
* A helper for initialising 3D boundaries -- header file.
*/
#ifndef SUPER_BOUNDARY_CONDITION_3D_H
#define SUPER_BOUNDARY_CONDITION_3D_H
#include
#include "io/ostreamManager.h"
#include "utilities/functorPtr.h"
#include "extendedFiniteDifferenceBoundary3D.h"
/// All OpenLB code is contained in this namespace.
namespace olb {
template class OnLatticeAdvectionDiffusionBoundaryCondition3D;
template class OnLatticeBoundaryCondition3D;
template class SuperLattice3D;
template class SuperGeometry3D;
template class SuperIndicatorF3D;
/// A helper for initialising 3D boundaries for super lattices.
/** Here we have methods that initializes the local postprocessors and the
* communicator (_commBC in SuperLattice) for boundary conditions
* for a given global point or global range.
*
* This class is not intended to be derived from.
*/
template
class sOnLatticeBoundaryCondition3D {
public:
sOnLatticeBoundaryCondition3D(SuperLattice3D& sLattice);
sOnLatticeBoundaryCondition3D(sOnLatticeBoundaryCondition3D const& rhs);
sOnLatticeBoundaryCondition3D operator=(sOnLatticeBoundaryCondition3D rhs);
~sOnLatticeBoundaryCondition3D();
void addVelocityBoundary(FunctorPtr>&& indicator, T omega);
void addVelocityBoundary(SuperGeometry3D& superGeometry, int material, T omega);
void addSlipBoundary(FunctorPtr>&& indicator);
void addSlipBoundary(SuperGeometry3D& superGeometry, int material);
void addPartialSlipBoundary(T tuner, FunctorPtr>&& indicator);
void addPartialSlipBoundary(T tuner, SuperGeometry3D& superGeometry, int material);
void addPressureBoundary(FunctorPtr>&& indicator, T omega);
void addPressureBoundary(SuperGeometry3D& superGeometry, int material, T omega);
void addConvectionBoundary(FunctorPtr>&& indicator,
T omega, T* uAv=NULL);
void addConvectionBoundary(SuperGeometry3D& superGeometry, int material,
T omega, T* uAv=NULL);
void addConvectionBoundary(FunctorPtr>&& indicator);
void addConvectionBoundary(SuperGeometry3D& superGeometry, int material);
void addWallFunctionBoundary(FunctorPtr>&& indicator,
UnitConverter const& converter,
wallFunctionParam const& wallFunctionParam,
IndicatorF3D* geoIndicator=NULL);
void addWallFunctionBoundary(SuperGeometry3D& superGeometry, int material,
UnitConverter const& converter,
wallFunctionParam const& wallFunctionParam,
IndicatorF3D* geoIndicator=NULL);
void addTemperatureBoundary(FunctorPtr>&& indicator, T omega);
void addTemperatureBoundary(SuperGeometry3D& superGeometry, int material, T omega);
void addExtFieldBoundary(FunctorPtr>&& indicator, int offset);
void addExtFieldBoundary(SuperGeometry3D& superGeometry, int material, int offset);
void addZeroDistributionBoundary(FunctorPtr>&& indicator);
void addZeroDistributionBoundary(SuperGeometry3D& superGeometry, int material);
/// Implementation of a wetting boundary condition for the binary free energy model, consisting of a BounceBack
/// dynamics and an FreeEnergyWall PostProcessor.
/// \param[in] alpha_ - Parameter related to the interface width. [lattice units]
/// \param[in] kappa1_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa2_ - Parameter related to surface tension. [lattice units]
/// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly
void addFreeEnergyWallBoundary(FunctorPtr>&& indicator,
T alpha, T kappa1, T kappa2, T h1, T h2, int latticeNumber);
/// Implementation of a wetting boundary condition for the binary free energy model, consisting of a BounceBack
/// dynamics and an FreeEnergyWall PostProcessor.
/// \param[in] alpha_ - Parameter related to the interface width. [lattice units]
/// \param[in] kappa1_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa2_ - Parameter related to surface tension. [lattice units]
/// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly
void addFreeEnergyWallBoundary(SuperGeometry3D& superGeometry, int material,
T alpha, T kappa1, T kappa2, T h1, T h2, int latticeNumber);
/// Implementation of a wetting boundary condition for the ternary free energy model, consisting of a BounceBack
/// dynamics and an FreeEnergyWall PostProcessor.
/// \param[in] alpha_ - Parameter related to the interface width. [lattice units]
/// \param[in] kappa1_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa2_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa3_ - Parameter related to surface tension. [lattice units]
/// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h3_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly
void addFreeEnergyWallBoundary(FunctorPtr>&& indicator,
T alpha, T kappa1, T kappa2, T kappa3, T h1, T h2, T h3, int latticeNumber);
/// Implementation of a wetting boundary condition for the ternary free energy model, consisting of a BounceBack
/// dynamics and an FreeEnergyWall PostProcessor.
/// \param[in] alpha_ - Parameter related to the interface width. [lattice units]
/// \param[in] kappa1_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa2_ - Parameter related to surface tension. [lattice units]
/// \param[in] kappa3_ - Parameter related to surface tension. [lattice units]
/// \param[in] h1_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h2_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] h3_ - Parameter related to resulting contact angle of the boundary. [lattice units]
/// \param[in] latticeNumber - determines the number of the free energy lattice to set the boundary accordingly
void addFreeEnergyWallBoundary(SuperGeometry3D& superGeometry, int material,
T alpha, T kappa1, T kappa2, T kappa3, T h1, T h2, T h3, int latticeNumber);
/// Implementation of a inlet boundary condition for the partner lattices of the binary or the ternary free energy model.
void addFreeEnergyInletBoundary(FunctorPtr>&& indicator, T omega, std::string type, int latticeNumber);
/// Implementation of a inlet boundary condition for the partner lattices of the binary or the ternary free energy model.
void addFreeEnergyInletBoundary(SuperGeometry3D& superGeometry, int material, T omega, std::string type, int latticeNumber);
/// Implementation of a outlet boundary condition for the partner lattices of the binary or the ternary free energy model.
void addFreeEnergyOutletBoundary(FunctorPtr>&& indicator, T omega, std::string type, int latticeNumber);
/// Implementation of a outlet boundary condition for the partner lattices of the binary or the ternary free energy model.
void addFreeEnergyOutletBoundary(SuperGeometry3D& superGeometry, int material, T omega, std::string type, int latticeNumber);
/// Adds needed Cells to the Communicator _commBC in SuperLattice
void addPoints2CommBC(FunctorPtr>&& indicator);
/// Adds needed Cells to the Communicator _commBC in SuperLattice
void addPoints2CommBC(SuperGeometry3D& superGeometry, int material);
SuperLattice3D& getSuperLattice();
std::vector*>& getBlockBCs();
std::vector*>& getADblockBCs();
int getOverlap();
void setOverlap(int overlap);
void outputOn();
void outputOff();
private:
mutable OstreamManager clout;
SuperLattice3D& _sLattice;
std::vector*> _blockBCs;
std::vector*> _ADblockBCs;
int _overlap;
bool _output;
};
////////////////// Factory functions //////////////////////////////////
template
void createLocalBoundaryCondition3D(sOnLatticeBoundaryCondition3D& sBC);
template >
void createInterpBoundaryCondition3D(sOnLatticeBoundaryCondition3D& sBC);
template >
void createExtFdBoundaryCondition3D(sOnLatticeBoundaryCondition3D& sBC);
} // namespace olb
#endif