/* This file is part of the OpenLB library * * Copyright (C) 2006-2008 Jonas Latt * OMP parallel code by Mathias Krause, Copyright (C) 2007 * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** \file * The dynamics of a 2D block lattice -- generic implementation. */ #ifndef BLOCK_LATTICE_2D_HH #define BLOCK_LATTICE_2D_HH #include #include "blockLattice2D.h" #include "dynamics/dynamics.h" #include "dynamics/lbHelpers.h" #include "util.h" #include "communication/loadBalancer.h" #include "communication/blockLoadBalancer.h" #include "functors/lattice/indicator/blockIndicatorF2D.h" #include "communication/ompManager.h" namespace olb { ////////////////////// Class BlockLattice2D ///////////////////////// /** \param nx lattice width (first index) * \param ny lattice height (second index) */ template BlockLattice2D::BlockLattice2D(int nx, int ny) : BlockLatticeStructure2D(nx,ny) { allocateMemory(); resetPostProcessors(); #ifdef PARALLEL_MODE_OMP statistics = new LatticeStatistics* [3*omp.get_size()]; #pragma omp parallel { statistics[omp.get_rank() + omp.get_size()] = new LatticeStatistics; statistics[omp.get_rank()] = new LatticeStatistics; statistics[omp.get_rank() + 2*omp.get_size()] = new LatticeStatistics; } #else statistics = new LatticeStatistics; #endif } /** During destruction, the memory for the lattice and the contained * cells is released. However, the dynamics objects pointed to by * the cells must be deleted manually by the user. */ template BlockLattice2D::~BlockLattice2D() { releaseMemory(); clearPostProcessors(); clearLatticeCouplings(); #ifdef PARALLEL_MODE_OMP #pragma omp parallel { delete statistics[omp.get_rank()]; } delete statistics; #else delete statistics; #endif } template void BlockLattice2D::initialize() { postProcess(); } template Dynamics* BlockLattice2D::getDynamics (int iX, int iY) { return grid[iX][iY].getDynamics(); } /** The dynamics object is not duplicated: all cells of the rectangular * domain point to the same dynamics. * * The dynamics object is not owned by the BlockLattice2D object, its * memory management is in charge of the user. */ template void BlockLattice2D::defineDynamics ( int x0, int x1, int y0, int y1, Dynamics* dynamics ) { OLB_PRECONDITION(x0>=0 && x1_nx); OLB_PRECONDITION(x1>=x0); OLB_PRECONDITION(y0>=0 && y1_ny); OLB_PRECONDITION(y1>=y0); for (int iX=x0; iX<=x1; ++iX) { for (int iY=y0; iY<=y1; ++iY) { grid[iX][iY].defineDynamics(dynamics); } } } template void BlockLattice2D::defineDynamics ( int iX, int iY, Dynamics* dynamics ) { OLB_PRECONDITION(iX>=0 && iX_nx); OLB_PRECONDITION(iY>=0 && iY_ny); grid[iX][iY].defineDynamics(dynamics); } template void BlockLattice2D::defineDynamics ( BlockIndicatorF2D& indicator, Dynamics* dynamics) { int latticeR[2]; for (latticeR[0] = 0; latticeR[0] < this->_nx; ++latticeR[0]) { for (latticeR[1] = 0; latticeR[1] < this->_ny; ++latticeR[1]) { if (indicator(latticeR)) { get(latticeR).defineDynamics(dynamics); } } } } template void BlockLattice2D::defineDynamics( BlockGeometryStructure2D& blockGeometry, int material, Dynamics* dynamics) { BlockIndicatorMaterial2D indicator(blockGeometry, std::vector(1, material)); defineDynamics(indicator, dynamics); } template void BlockLattice2D::collide(int x0, int x1, int y0, int y1) { OLB_PRECONDITION(x0>=0 && x1_nx); OLB_PRECONDITION(x1>=x0); OLB_PRECONDITION(y0>=0 && y1_ny); OLB_PRECONDITION(y1>=y0); int iX; #ifdef PARALLEL_MODE_OMP #pragma omp parallel for schedule(dynamic,1) #endif for (iX=x0; iX<=x1; ++iX) { for (int iY=y0; iY<=y1; ++iY) { grid[iX][iY].collide(getStatistics()); grid[iX][iY].revert(); } } } /** \sa collide(int,int,int,int) */ template void BlockLattice2D::collide() { collide(0, this->_nx-1, 0, this->_ny-1); } /** The distribution functions never leave the rectangular domain. On the * domain boundaries, the (outgoing) distribution functions that should * be streamed outside are simply left untouched. * The post-processing steps are not automatically invoked by this method, * as they are in the method stream(). If you want them to be executed, you * must explicitly call the method postProcess(). * \sa stream() */ template void BlockLattice2D::stream(int x0, int x1, int y0, int y1) { OLB_PRECONDITION(x0>=0 && x1_nx); OLB_PRECONDITION(x1>=x0); OLB_PRECONDITION(y0>=0 && y1_ny); OLB_PRECONDITION(y1>=y0); static const int vicinity = descriptors::vicinity(); bulkStream(x0+vicinity,x1-vicinity,y0+vicinity,y1-vicinity); boundaryStream(x0,x1,y0,y1, x0,x0+vicinity-1, y0,y1); boundaryStream(x0,x1,y0,y1, x1-vicinity+1,x1, y0,y1); boundaryStream(x0,x1,y0,y1, x0+vicinity,x1-vicinity, y0,y0+vicinity-1); boundaryStream(x0,x1,y0,y1, x0+vicinity,x1-vicinity, y1-vicinity+1,y1); } /** At the end of this method, the post-processing steps are automatically * invoked. * \sa stream(int,int,int,int) */ template void BlockLattice2D::stream(bool periodic) { stream(0, this->_nx-1, 0, this->_ny-1); if (periodic) { makePeriodic(); } postProcess(); getStatistics().incrementTime(); } /** This operation is more efficient than a successive application of * collide(int,int,int,int) and stream(int,int,int,int), because memory * is traversed only once instead of twice. * The post-processing steps are not automatically invoked by this method, * as they are in the method stream(). If you want them to be executed, you * must explicitly call the method postProcess(). * \sa collideAndStream() */ template void BlockLattice2D::collideAndStream(int x0, int x1, int y0, int y1) { OLB_PRECONDITION(x0>=0 && x1_nx); OLB_PRECONDITION(x1>=x0); OLB_PRECONDITION(y0>=0 && y1_ny); OLB_PRECONDITION(y1>=y0); static const int vicinity = descriptors::vicinity(); // First, do the collision on cells within a boundary envelope of width // equal to the range of the lattice vectors (e.g. 1 for D2Q9) collide(x0,x0+vicinity-1, y0,y1); collide(x1-vicinity+1,x1, y0,y1); collide(x0+vicinity,x1-vicinity, y0,y0+vicinity-1); collide(x0+vicinity,x1-vicinity, y1-vicinity+1,y1); // Then, do the efficient collideAndStream algorithm in the bulk, // excluding the envelope (this is efficient because there is no // if-then-else statement within the loop, given that the boundary // region is excluded) bulkCollideAndStream(x0+vicinity,x1-vicinity,y0+vicinity,y1-vicinity); // Finally, do streaming in the boundary envelope to conclude the // collision-stream cycle boundaryStream(x0,x1,y0,y1, x0,x0+vicinity-1,y0,y1); boundaryStream(x0,x1,y0,y1, x1-vicinity+1,x1,y0,y1); boundaryStream(x0,x1,y0,y1, x0+vicinity,x1-vicinity, y0,y0+vicinity-1); boundaryStream(x0,x1,y0,y1, x0+vicinity,x1-vicinity, y1-vicinity+1,y1); } /** At the end of this method, the post-processing steps are automatically * invoked. * \sa collideAndStream(int,int,int,int) */ template void BlockLattice2D::collideAndStream(bool periodic) { collideAndStream(0, this->_nx-1, 0, this->_ny-1); if (periodic) { makePeriodic(); } postProcess(); getStatistics().incrementTime(); } template T BlockLattice2D::computeAverageDensity ( int x0, int x1, int y0, int y1) const { T sumRho = T(); for (int iX=x0; iX<=x1; ++iX) { for (int iY=y0; iY<=y1; ++iY) { T rho, u[DESCRIPTOR::d]; get(iX,iY).computeRhoU(rho, u); sumRho += rho; } } return sumRho / (T)(x1-x0+1) / (T)(y1-y0+1); } template T BlockLattice2D::computeAverageDensity() const { return computeAverageDensity(0, this->_nx-1, 0, this->_ny-1); } template void BlockLattice2D::computeStress(int iX, int iY, T pi[util::TensorVal::n]) { grid[iX][iY].computeStress(pi); } template void BlockLattice2D::stripeOffDensityOffset ( int x0, int x1, int y0, int y1, T offset ) { for (int iX=x0; iX<=x1; ++iX) { for (int iY=y0; iY<=y1; ++iY) { for (int iPop=0; iPop(iPop) * offset; } } } } template void BlockLattice2D::stripeOffDensityOffset(T offset) { stripeOffDensityOffset(0, this->_nx-1, 0, this->_ny-1, offset); } template void BlockLattice2D::forAll ( int x0, int x1, int y0, int y1, WriteCellFunctional const& application ) { for (int iX=x0; iX<=x1; ++iX) { for (int iY=y0; iY<=y1; ++iY) { int pos[] = {iX, iY}; application.apply( get(iX,iY), pos ); } } } template void BlockLattice2D::forAll(WriteCellFunctional const& application) { forAll(0, this->_nx-1, 0, this->_ny-1, application); } template void BlockLattice2D::addPostProcessor ( PostProcessorGenerator2D const& ppGen ) { postProcessors.push_back(ppGen.generate()); } template void BlockLattice2D::resetPostProcessors() { clearPostProcessors(); StatPPGenerator2D statPPGenerator; addPostProcessor(statPPGenerator); } template void BlockLattice2D::clearPostProcessors() { typename PostProcVector::iterator ppIt = postProcessors.begin(); for (; ppIt != postProcessors.end(); ++ppIt) { delete *ppIt; } postProcessors.clear(); } template void BlockLattice2D::postProcess() { for (unsigned iPr=0; iPr process(*this); } } template void BlockLattice2D::postProcess(int x0_, int x1_, int y0_, int y1_) { for (unsigned iPr=0; iPr processSubDomain(*this, x0_, x1_, y0_, y1_); } } template void BlockLattice2D::addLatticeCoupling ( LatticeCouplingGenerator2D const& lcGen, std::vector partners ) { latticeCouplings.push_back(lcGen.generate(partners)); } template void BlockLattice2D::executeCoupling() { for (unsigned iPr=0; iPr process(*this); } } template void BlockLattice2D::executeCoupling(int x0_, int x1_, int y0_, int y1_) { for (unsigned iPr=0; iPr processSubDomain(*this, x0_, x1_, y0_, y1_); } } template void BlockLattice2D::clearLatticeCouplings() { typename PostProcVector::iterator ppIt = latticeCouplings.begin(); for (; ppIt != latticeCouplings.end(); ++ppIt) { delete *ppIt; } latticeCouplings.clear(); } template LatticeStatistics& BlockLattice2D::getStatistics() { #ifdef PARALLEL_MODE_OMP return *statistics[omp.get_rank()]; #else return *statistics; #endif } template LatticeStatistics const& BlockLattice2D::getStatistics() const { #ifdef PARALLEL_MODE_OMP return *statistics[omp.get_rank()]; #else return *statistics; #endif } template void BlockLattice2D::allocateMemory() { // The conversions to size_t ensure 64-bit compatibility. Note that // nx and ny are of type int, which might by 32-bit types, even on // 64-bit platforms. Therefore, nx*ny may lead to a type overflow. rawData = new Cell [(size_t)(this->_nx)*(size_t)(this->_ny)]; grid = new Cell* [(size_t)(this->_nx)]; for (int iX=0; iX_nx; ++iX) { grid[iX] = rawData + (size_t)iX*(size_t)(this->_ny); } } template void BlockLattice2D::releaseMemory() { delete [] rawData; delete [] grid; } /** This method is slower than bulkStream(int,int,int,int), because it must * be verified which distribution functions are to be kept from leaving * the domain. * \sa stream(int,int,int,int) * \sa stream() */ template void BlockLattice2D::boundaryStream ( int lim_x0, int lim_x1, int lim_y0, int lim_y1, int x0, int x1, int y0, int y1 ) { OLB_PRECONDITION(lim_x0>=0 && lim_x1_nx); OLB_PRECONDITION(lim_x1>=lim_x0); OLB_PRECONDITION(lim_y0>=0 && lim_y1_ny); OLB_PRECONDITION(lim_y1>=lim_y0); OLB_PRECONDITION(x0>=lim_x0 && x1<=lim_x1); OLB_PRECONDITION(x1>=x0); OLB_PRECONDITION(y0>=lim_y0 && y1<=lim_y1); OLB_PRECONDITION(y1>=y0); int iX; #ifdef PARALLEL_MODE_OMP #pragma omp parallel for #endif for (iX=x0; iX<=x1; ++iX) { for (int iY=y0; iY<=y1; ++iY) { for (int iPop=1; iPop<=DESCRIPTOR::q/2; ++iPop) { int nextX = iX + descriptors::c(iPop,0); int nextY = iY + descriptors::c(iPop,1); if (nextX>=lim_x0 && nextX<=lim_x1 && nextY>=lim_y0 && nextY<=lim_y1) { std::swap(grid[iX][iY][iPop+DESCRIPTOR::q/2], grid[nextX][nextY][iPop]); } } } } } /** This method is faster than boundaryStream(int,int,int,int), but it * is erroneous when applied to boundary cells. * \sa stream(int,int,int,int) * \sa stream() */ template void BlockLattice2D::bulkStream ( int x0, int x1, int y0, int y1 ) { OLB_PRECONDITION(x0>=0 && x1_nx); OLB_PRECONDITION(x1>=x0); OLB_PRECONDITION(y0>=0 && y1_ny); OLB_PRECONDITION(y1>=y0); int iX; #ifdef PARALLEL_MODE_OMP #pragma omp parallel for #endif for (iX=x0; iX<=x1; ++iX) { for (int iY=y0; iY<=y1; ++iY) { for (int iPop=1; iPop<=DESCRIPTOR::q/2; ++iPop) { int nextX = iX + descriptors::c(iPop,0); int nextY = iY + descriptors::c(iPop,1); std::swap(grid[iX][iY][iPop+DESCRIPTOR::q/2], grid[nextX][nextY][iPop]); } } } } #ifndef PARALLEL_MODE_OMP // OpenMP parallel version is at the // end of this file /** This method is fast, but it is erroneous when applied to boundary * cells. * \sa collideAndStream(int,int,int,int) * \sa collideAndStream() */ template void BlockLattice2D::bulkCollideAndStream ( int x0, int x1, int y0, int y1 ) { OLB_PRECONDITION(x0>=0 && x1_nx); OLB_PRECONDITION(x1>=x0); OLB_PRECONDITION(y0>=0 && y1_ny); OLB_PRECONDITION(y1>=y0); for (int iX=x0; iX<=x1; ++iX) { for (int iY=y0; iY<=y1; ++iY) { grid[iX][iY].collide(getStatistics()); lbHelpers::swapAndStream2D(grid, iX, iY); } } } #endif // not defined PARALLEL_MODE_OMP template std::size_t BlockLattice2D::getNblock() const { return 2 + rawData[0].getNblock() * this->_nx * this->_ny; } template std::size_t BlockLattice2D::getSerializableSize() const { return 2 * sizeof(int) + rawData[0].getSerializableSize() * this->_nx * this->_ny; } template bool* BlockLattice2D::getBlock(std::size_t iBlock, std::size_t& sizeBlock, bool loadingMode) { std::size_t currentBlock = 0; bool* dataPtr = nullptr; registerVar (iBlock, sizeBlock, currentBlock, dataPtr, this->_nx); registerVar (iBlock, sizeBlock, currentBlock, dataPtr, this->_ny); registerSerializablesOfConstSize (iBlock, sizeBlock, currentBlock, dataPtr, rawData, (size_t) this->_nx * this->_ny, loadingMode); return dataPtr; } template void BlockLattice2D::periodicEdge(int x0, int x1, int y0, int y1) { for (int iX=x0; iX<=x1; ++iX) { for (int iY=y0; iY<=y1; ++iY) { for (int iPop=1; iPop<=DESCRIPTOR::q/2; ++iPop) { int nextX = iX + descriptors::c(iPop,0); int nextY = iY + descriptors::c(iPop,1); if ( nextX<0 || nextX>=this->_nx || nextY<0 || nextY>=this->_ny ) { nextX = (nextX+this->_nx)%this->_nx; nextY = (nextY+this->_ny)%this->_ny; std::swap ( grid[iX][iY][iPop+DESCRIPTOR::q/2], grid[nextX][nextY][iPop] ); } } } } } template void BlockLattice2D::makePeriodic() { static const int vicinity = descriptors::vicinity(); int maxX = this->_nx-1; int maxY = this->_ny-1; periodicEdge(0,vicinity-1, 0,maxY); periodicEdge(maxX-vicinity+1,maxX, 0,maxY); periodicEdge(vicinity,maxX-vicinity, 0,vicinity-1); periodicEdge(vicinity,maxX-vicinity, maxY-vicinity+1,maxY); } //// OpenMP implementation of the method bulkCollideAndStream, // by Mathias Krause //// #ifdef PARALLEL_MODE_OMP template void BlockLattice2D::bulkCollideAndStream ( int x0, int x1, int y0, int y1 ) { OLB_PRECONDITION(x0>=0 && x1_nx); OLB_PRECONDITION(x1>=x0); OLB_PRECONDITION(y0>=0 && y1_ny); OLB_PRECONDITION(y1>=y0); if (omp.get_size() <= x1-x0+1) { #pragma omp parallel { BlockLoadBalancer loadbalance(omp.get_rank(), omp.get_size(), x1-x0+1, x0); int iX, iY, iPop; iX=loadbalance.firstGlobNum(); for (int iY=y0; iY<=y1; ++iY) { grid[iX][iY].collide(getStatistics()); grid[iX][iY].revert(); } for (iX=loadbalance.firstGlobNum()+1; iX<=loadbalance.lastGlobNum(); ++iX) { for (iY=y0; iY<=y1; ++iY) { grid[iX][iY].collide(getStatistics()); /** The method beneath doesnt work with Intel compiler 9.1044 and 9.1046 for Itanium prozessors * lbHelpers::swapAndStream2D(grid, iX, iY); * Therefore we use: */ int half = DESCRIPTOR::q/2; for (int iPop=1; iPop<=half; ++iPop) { int nextX = iX + descriptors::c(iPop,0); int nextY = iY + descriptors::c(iPop,1); T fTmp = grid[iX][iY][iPop]; grid[iX][iY][iPop] = grid[iX][iY][iPop+half]; grid[iX][iY][iPop+half] = grid[nextX][nextY][iPop]; grid[nextX][nextY][iPop] = fTmp; } } } #pragma omp barrier iX=loadbalance.firstGlobNum(); for (iY=y0; iY<=y1; ++iY) { for (iPop=1; iPop<=DESCRIPTOR::q/2; ++iPop) { int nextX = iX + descriptors::c(iPop,0); int nextY = iY + descriptors::c(iPop,1); std::swap(grid[iX][iY][iPop+DESCRIPTOR::q/2], grid[nextX][nextY][iPop]); } } } } else { for (int iX=x0; iX<=x1; ++iX) { for (int iY=y0; iY<=y1; ++iY) { grid[iX][iY].collide(getStatistics()); lbHelpers::swapAndStream2D(grid, iX, iY); } } } } #endif // defined PARALLEL_MODE_OMP } // namespace olb #endif