/* This file is part of the OpenLB library * * Copyright (C) 2006, 2007 Jonas Latt * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #ifndef FINITE_DIFFERENCE_3D_H #define FINITE_DIFFERENCE_3D_H #include "finiteDifference.h" namespace olb { namespace fd { template struct DirectedGradients3D { static void interpolateVector( T velDeriv[DESCRIPTOR::d], BlockLattice3D const& blockLattice, int iX, int iY, int iZ ); static void interpolateScalar( T& rhoDeriv, BlockLattice3D const& blockLattice, int iX, int iY, int iZ ); }; // Implementation for orthogonal==true; i.e. the derivative is along the boundary normal. template struct DirectedGradients3D { static void interpolateVector(T velDeriv[DESCRIPTOR::d], BlockLattice3D const& blockLattice, int iX, int iY, int iZ) { using namespace fd; T u0[DESCRIPTOR::d], u1[DESCRIPTOR::d], u2[DESCRIPTOR::d]; blockLattice.get(iX,iY,iZ).computeU(u0); blockLattice.get ( iX+(direction==0 ? (-orientation):0), iY+(direction==1 ? (-orientation):0), iZ+(direction==2 ? (-orientation):0) ).computeU(u1); blockLattice.get ( iX+(direction==0 ? (-2*orientation):0), iY+(direction==1 ? (-2*orientation):0), iZ+(direction==2 ? (-2*orientation):0) ).computeU(u2); for (int iD=0; iD const& blockLattice, int iX, int iY, int iZ) { using namespace fd; // note that the derivative runs along direction. T rho0 = blockLattice.get(iX,iY,iZ).computeRho(); T rho1 = blockLattice.get ( iX+(direction==0 ? (-orientation):0), iY+(direction==1 ? (-orientation):0), iZ+(direction==2 ? (-orientation):0) ).computeRho(); T rho2 = blockLattice.get ( iX+(direction==0 ? (-2*orientation):0), iY+(direction==1 ? (-2*orientation):0), iZ+(direction==2 ? (-2*orientation):0) ).computeRho(); rhoDeriv = -orientation * boundaryGradient(rho0, rho1, rho2); } }; // Implementation for orthogonal==false; i.e. the derivative is aligned with the boundary. template struct DirectedGradients3D { static void interpolateVector(T velDeriv[DESCRIPTOR::d], BlockLattice3D const& blockLattice, int iX, int iY, int iZ) { using namespace fd; T u_p1[DESCRIPTOR::d], u_m1[DESCRIPTOR::d]; blockLattice.get ( iX+(deriveDirection==0 ? 1:0), iY+(deriveDirection==1 ? 1:0), iZ+(deriveDirection==2 ? 1:0) ).computeU(u_p1); blockLattice.get ( iX+(deriveDirection==0 ? (-1):0), iY+(deriveDirection==1 ? (-1):0), iZ+(deriveDirection==2 ? (-1):0) ).computeU(u_m1); for (int iD=0; iD const& blockLattice, int iX, int iY, int iZ) { using namespace fd; T rho_p1 = blockLattice.get ( iX+(deriveDirection==0 ? 1:0), iY+(deriveDirection==1 ? 1:0), iZ+(deriveDirection==2 ? 1:0) ).computeRho(); T rho_m1 = blockLattice.get ( iX+(deriveDirection==0 ? (-1):0), iY+(deriveDirection==1 ? (-1):0), iZ+(deriveDirection==2 ? (-1):0) ).computeRho(); rhoDeriv = centralGradient(rho_p1, rho_m1); } }; } // namespace fd } // namespace olb #endif