/* This file is part of the OpenLB library * * Copyright (C) 2007 Mathias J. Krause * E-mail contact: info@openlb.net * The most recent release of OpenLB can be downloaded at * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the Free * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ /** \file * The description of a 3D super lattice -- header file. */ #ifndef SUPER_LATTICE_3D_H #define SUPER_LATTICE_3D_H #include #include "blockLattice3D.h" #include "blockLatticeView3D.h" #include "superData3D.h" #include "communication/communicator3D.h" #include "postProcessing.h" #include "serializer.h" #include "communication/superStructure3D.h" #include "utilities/functorPtr.h" /// All OpenLB code is contained in this namespace. namespace olb { template class SuperLatticeF3D; template class AnalyticalF3D; template class SuperGeometry3D; template class SuperIndicatorF3D; template class LoadBalancer; template class CuboidGeometry3D; template class IndicatorSphere3D; template class Communicator3D; template class BlockLatticeView3D; /// A super lattice combines a number of block lattices that are ordered /// in a cuboid geometry. /** The communication between the block lattices is done by two * communicators. One (_commStream) is responsible to provide the data for * the streaming the other (_commBC) for the non-local boundary conditions. * To simplify the code structure ghost cells in an overlap of size * (_overlap) is introduced. It depends on the non-locality of the * boundary conditions but is at least one because of the streaming * * The algorithm is parallelized with mpi. The load balancer (_loadBalancer) * distributes the block lattices to processes. * * WARNING: For unstructured grids there is an interpolation needed * for the method buffer_outData in cuboidNeighbourhood which is not * yet implemented! Moreover this class needs to be changed so * that the number of times steps for the collision and streaming is * is dependent of the refinement level. * * This class is not intended to be derived from. */ template class SuperLattice3D : public SuperStructure3D, public BufferSerializable { private: /// Lattices with ghost cell layer of size overlap std::vector > _extendedBlockLattices; /// View of the lattices without overlap std::vector > _blockLattices; /// This communicator handles the communication for the streaming Communicator3D _commStream; /// This communicator handles the communication for the postprocessors Communicator3D _commBC; /// Specifies if there is communication for non local boundary conditions /// needed. It is automatically switched on if overlapBC >= 1 by /// calling the constructor. (default =false) bool _commBC_on; /// Statistic of the super structure LatticeStatistics *_statistics; /// Specifies if there is statistic calculated. It is always /// needed for the ConstRhoBGK dynamics. (default =true) bool _statistics_on; public: /// Construction of a super lattice SuperLattice3D(SuperGeometry3D& superGeometry); SuperLattice3D(const SuperLattice3D&) = delete; ~SuperLattice3D() override; /// Read and write access to a block lattice BlockLattice3D& getExtendedBlockLattice(int locIC) { return _extendedBlockLattices[locIC]; } ; /// Read only access to a block lattice BlockLattice3D const& getExtendedBlockLattice(int locIC) const { return _extendedBlockLattices[locIC]; } ; /// Read and write access to a lattice (block lattice view, one /// without overlap). BlockLatticeView3D& getBlockLattice(int locIC) { return _blockLattices[locIC]; } ; /// Read only access to a lattice BlockLatticeView3D const& getBlockLattice(int locIC) const { return _blockLattices[locIC]; } ; /// Read and write access to the boundary communicator Communicator3D& get_commBC() { return _commBC; } ; /// Read only access to the boundary communicator Communicator3D const& get_commBC() const { return _commBC; } ; /// Return a handle to the LatticeStatistics object LatticeStatistics& getStatistics(); /// Return a constant handle to the LatticeStatistics object LatticeStatistics const& getStatistics() const; /// Write access to lattice cells that returns false if /// (iX/iY/iZ) is not in any of the cuboids bool set(T iX, T iY, T iZ, Cell const& cell); /// Read only access to lattice cells that returns false if /// (iX/iY/iZ) is not in any of the cuboids bool get(T iX, T iY, T iZ, Cell& cell) const; /// Read only access to lattice cells over the cuboid number /// and local coordinates WARNING!!! NO ERROR HANDLING IMPLEMENTED!!! Cell get(int iC, int locX, int locY, int locZ) const; Cell get(std::vector latticeR) const; /// Write access to the memory of the data of the super structure bool* operator() (int iCloc, int iX, int iY, int iZ, int iData) override { return (bool*)&getExtendedBlockLattice(iCloc).get(iX+this->_overlap, iY+this->_overlap, iZ+this->_overlap)[iData]; }; /// Read only access to the dim of the data of the super structure int getDataSize() const override { return DESCRIPTOR::q; }; /// Read only access to the data type dim of the data of the super structure int getDataTypeSize() const override { return sizeof(T); }; /// Initialize all lattice cells to become ready for simulation void initialize(); /// Define the dynamics on a domain described by an indicator void defineDynamics(FunctorPtr>&& indicator, Dynamics* dynamics); /// Define the dynamics on a domain with a particular material number void defineDynamics(SuperGeometry3D& sGeometry, int material, Dynamics* dynamics); /// Define rho on a domain described by an indicator /** * \param indicator Indicator describing the target domain * \param rho Analytical functor **/ void defineRho(FunctorPtr>&&, AnalyticalF3D& rho); /// Define rho on a domain with a particular material number void defineRho(SuperGeometry3D& sGeometry, int material, AnalyticalF3D& rho); /// Define u on a domain described by an indicator /** * \param indicator Indicator describing the target domain * \param u Analytical functor **/ void defineU(FunctorPtr>&& indicator, AnalyticalF3D& u); /// Define u on a domain with a particular material number void defineU(SuperGeometry3D& sGeometry, int material, AnalyticalF3D& u); /// Define rho and u on a domain described by an indicator /** * \param indicator Indicator describing the target domain * \param rho Analytical functor * \param u Analytical functor **/ void defineRhoU(FunctorPtr>&& indicator, AnalyticalF3D& rho, AnalyticalF3D& u); /// Define rho and u on a domain with a particular material number void defineRhoU(SuperGeometry3D& sGeometry, int material, AnalyticalF3D& rho, AnalyticalF3D& u); /// Define a population on a domain described by an indicator /** * \param indicator Indicator describing the target domain * \param Pop Analytical functor, target dimension DESCRIPTOR::q **/ void definePopulations(FunctorPtr>&& indicator, AnalyticalF3D& Pop); /// Define a population on a domain with a particular material number void definePopulations(SuperGeometry3D& sGeometry, int material, AnalyticalF3D& Pop); /** * \param indicator Indicator describing the target domain * \param Pop Super functor, target dimension DESCRIPTOR::q **/ void definePopulations(FunctorPtr>&& indicator, SuperF3D& Pop); /// Define a population on a domain with a particular material number void definePopulations(SuperGeometry3D& sGeometry, int material, SuperF3D& Pop); /// Define an external field on a domain with a particular material number template void defineField(SuperGeometry3D& sGeometry, int material, SuperF3D& field); /// Defines a field on a domain described by an indicator template void defineField(FunctorPtr>&& indicator, AnalyticalF3D& field) { for (int iC = 0; iC < this->_loadBalancer.size(); ++iC) { _extendedBlockLattices[iC].template defineField( indicator->getExtendedBlockIndicatorF(iC), field); } } /// Defines a field on a domain with a particular material number template void defineField(SuperGeometry3D& sGeometry, int material, AnalyticalF3D& field) { defineField(sGeometry.getMaterialIndicator(material), field); } /// Defines a field on a indicated domain template void defineField(SuperGeometry3D& sGeometry, IndicatorF3D& indicator, AnalyticalF3D& field); /// Initialize by equilibrium on a domain described by an indicator /** * \param indicator Indicator describing the target domain * \param rho Analytical functor (global) * \param u Analytical functor (global) **/ void iniEquilibrium(FunctorPtr>&& indicator, AnalyticalF3D& rho, AnalyticalF3D& u); /// Initialize by equilibrium on a domain with a particular material number void iniEquilibrium(SuperGeometry3D& sGeometry, int material, AnalyticalF3D& rho, AnalyticalF3D& u); #ifndef OLB_PRECOMPILED void setExternalParticleField(SuperGeometry3D& sGeometry, AnalyticalF3D& velocity, SmoothIndicatorF3D& sIndicator); #else void setExternalParticleField(SuperGeometry3D& sGeometry, AnalyticalF3D& velocity, SmoothIndicatorF3D& sIndicator) {}; #endif /// Apply collision step to a rectangular domain void collide(T x0, T x1, T y0, T y1, T z0, T z1); /// Apply collision step to the whole domain void collide(); /// Apply streaming step to a rectangular domain void stream(T x0, T x1, T y0, T y1, T z0, T z1); /// Apply streaming step to the whole domain void stream(); /// TO BE DONE: Apply first collision, then streaming step /// to a rectangular domain // void collideAndStream(T x0, T x1, T y0, T y1, T z0, T z1); /// Apply first collision, then streaming step /// to the whole domain void collideAndStream(); /// Subtract a constant offset from the density within the whole domain void stripeOffDensityOffset ( int x0_, int x1_, int y0_, int y1_, int z0_, int z1_, T offset ); /// Subtract a constant offset from the density within a rect. domain void stripeOffDensityOffset(T offset); /// Switches Statistics on (default on) void statisticsOn() { _statistics_on = true; }; /// Switches Statistics off (default on). That speeds up /// the execution time. void statisticsOff() { _statistics_on = false; }; /// Adds a coupling generator for one partner superLattice template void addLatticeCoupling(LatticeCouplingGenerator3D const& lcGen, SuperLattice3D& partnerLattice ); /// Adds a coupling generator for one partner superLattice template void addLatticeCoupling(FunctorPtr>&& indicator, LatticeCouplingGenerator3D const& lcGen, SuperLattice3D& partnerLattice ); /// Adds a coupling generator for one partner superLattice template void addLatticeCoupling(SuperGeometry3D& sGeometry, int material, LatticeCouplingGenerator3D const& lcGen, SuperLattice3D& partnerLattice ); /// Adds a coupling generator for a multiple partner superLattice template void addLatticeCoupling(LatticeCouplingGenerator3D const& lcGen, std::vector*> partnerLattices ); /// Adds a coupling generator for a multiple partner superLattice template void addLatticeCoupling(FunctorPtr>&& indicator, LatticeCouplingGenerator3D const& lcGen, std::vector*> partnerLattices ); /// Adds a coupling generator for a multiple partner superLattice template void addLatticeCoupling(SuperGeometry3D& sGeometry, int material, LatticeCouplingGenerator3D const& lcGen, std::vector*> partnerLattices ); /// Executes coupling generator for one partner superLattice void executeCoupling(); /// Number of data blocks for the serializable interface std::size_t getNblock() const override; /// Binary size for the serializer std::size_t getSerializableSize() const override; /// Return a pointer to the memory of the current block and its size for the serializable interface bool* getBlock(std::size_t iBlock, std::size_t& sizeBlock, bool loadingMode) override; private: /// Resets and reduce the statistics void reset_statistics(); }; } // namespace olb #endif